Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Объекты, входящие в Солнечную систему



Введение

Парадокс современной астрономии состоит в удивительно низком уровне знаний о нашем собственном доме - Солнечной системе. Астрономия в рамках известных физических законов способна построить близкие к реальности модели рождения, жизни и смерти небесных объектов, размеры, массы, энергетическая отдача и удаленность которых громадны по сравнению с реалиями нашего повседневного опыта. И в то же время, нет надежной модели происхождения и формирования планет и спутников Солнечной системы, неизвестно, как образуются и откуда появляются кометы, и неясно, содержат ли астероиды первичное вещество или являются осколками однажды уже сформировавшихся планетных тел.

Согласно одной из последних оценок, возраст Солнца составляет 4,49 миллиарда лет. Другие оценки времени существования Солнечной системы дают значения от 4,6 до 5 миллиардов лет. Самые древние горные породы Земли, которые, однако, являются вторичными образованиями, существуют около 3,9 миллиарда лет. Эти значения определены по накоплению в минералах продуктов распада радиоактивных элементов.

Радиометрический возраст наиболее древнего вещества Солнечной системы, из которого состоят падающие на Землю метеориты, достигает в среднем 4,6 млрд. лет. Примерно тот же возраст имеют и наиболее древние породы Луны, доставленные на Землю космическими аппаратами и экспедициями.

В течение периода, равного 4/5 предположительного времени существования Солнечной системы, на Земле существуют одноклеточные живые организмы. История многоклеточных занимает примерно 1/7 часть истории Земли. Существование человека - Homo sapiens - укладывается в 1/10000 часть времени, прошедшего с момента образования планет. И всего лишь около 1/1000000 этого времени занимает вся история астрономических наблюдений и осмысливания их результатов.

 

Объекты, входящие в Солнечную систему

 

Центральное тело нашей планетной системы - Солнце - желтый карлик, сосредоточило в себе 99,866% всей массы Солнечной системы. Оставшиеся 0,134% вещества представлены девятью большими планетами и несколькими десятками их спутников (в настоящее время их открыто более 60), малыми планетами - астероидами (примерно 100 тысяч), кометами (около 1011 объектов), огромным количеством мелких фрагментов - метеороидов и космической пылью. Механически эти объекты объединены в общую систему силой притяжения превосходящей массы Солнца. Ряд зависимостей показывают принадлежность различных по величине и физико-химическим свойствам тел к единому семейству. Средняя плотность объектов Солнечной системы изменяется в пределах от 0,5 г/см3 для ядер комет до 7,7 г/см3 для металлических астероидов и метеоритов.

Для наглядности все тела Солнечной системы, включая и Солнце, можно разместить на диаграмме логарифмической зависимости массы и размеров (рис. 1).


Рис. 1. Объекты Солнечной системы, представленные на диаграмме
логарифмической зависимости массы и размеров космических тел.

 

Самая крупная из планет - Юпитер отличается от Солнца на порядок по размерам и на три порядка по массе. Такое соотношение прямо указывает на одинаковую плотность вещества для обоих тел и близкий химический состав. Действительно, средняя плотность Юпитера составляет 1,32 г/см3, что очень близко к средней плотности солнечного вещества (1,41 г/см3). Основными элементами, определяющими химический состав обоих объектов, являются водород и гелий. Ближайший сосед Юпитера на диаграмме - Сатурн - по размерам почти не отличается от него, но меньшая плотность вещества планеты (0,686 г/см3) определяет и несколько меньшее значение массы. Следующие два гиганта - Уран и Нептун (с массой около 1029 г) занимают на рассматриваемой диаграмме одно и то же положение, мало отличаясь по своим свойствам - средней плотности (1,28 и 1,64 г/см3 соответственно) и химическому составу. Все четыре планеты традиционно выделяются в группу планет-гигантов, отличительной особенностью которой являются не только значительные размеры и масса, но также и низкая средняя плотность, характерная для газового состава.

Земля и Венера занимают на диаграмме близкие позиции, почти не отличаясь по размерам, массе и средней плотности (5,52 и 5,24 г/см3 соответственно). Марс и Меркурий замыкают группу планет, которые по общепринятой классификации относятся к объектам земного типа.

Однако, перечень "больших" планет Солнечной системы на этом не исчерпывается. Обратившись к диаграмме на рис. 1, мы увидим еще одну планету, находящуюся в области спутников планет. Этот необычный объект - Плутон - в момент своего открытия в 1930 г. занимал наиболее удаленное от Солнца положение, соответствующее месту девятой планеты Солнечной системы. Но орбита Плутона, как оказалось, обладает значительным эксцентриситетом и в 1969 г. он пересек орбиту Нептуна, превратившись в восьмую по удаленности от Солнца планету. В этом статусе Плутон будет пребывать до 2009 г. А первый после своего открытия полный оборот вокруг Солнца Плутон завершит лишь в 2178 году. Иногда возникает вопрос, является ли Плутон самостоятельной планетой. По размерам это тело меньше, чем спутник Земли - Луна. Между тем, Плутон обладает собственным спутником, обнаруженным в 1978 г. и названным Хароном. Соотношение масс планеты и спутника в системе Плутон-Харон очень необычно - приблизительно 5 :1. Эту пару тел вполне обоснованно можно назвать "двойной планетой", компоненты которой обращаются вокруг общего барицентра. В Солнечной системе есть лишь еще одно подобное исключение - Земля и Луна. Но при этом естественный спутник нашей планеты по массе в 80 раз меньше центрального тела.

Харон вращается по орбите, наклон которой к плоскости орбиты Плутона является также весьма нетипичным и составляет 1180. Средний радиус орбиты Харона необычно мал - менее 19700 км. Ближе к своей планете (Марсу) находится лишь еще один спутник в Солнечной системе - Фобос. Однако соотношение масс Марса и Фобоса имеет совсем другой порядок: масса спутника составляет лишь 1,5х10-8 массы планеты. Остается добавить, что наклонение орбиты самого Плутона к плоскости эклиптики также нетипично - более 170. Остальные планеты, за исключением Меркурия (i = 70), вращаются вокруг Солнца почти в одной плоскости, уклоняясь от нее не более, чем на 20-30.

 

На рис. 2 приведено изображение Плутона и Харона, полученное в феврале 1994 г. Космическим телескопом им. Хаббла во время удаления двух тел друг от друга на расстояние 19640 км.


Рис. 2. Изображение системы Плутон-Харон, полученное Космическим телескопом им. Хаббла.

 

Возвращаясь к рис. 1, следует указать, что выделенные на диаграмме группы планет располагаются на различном расстоянии от Солнца. Планеты земной группы составляют внутреннюю часть Солнечной системы. Планеты-гиганты образуют ее внешнюю часть. Промежуточное положение занимает пояс астероидов, в котором сосредоточена большая часть малых планет. Распределение планетных расстояний от Солнца можно приблизительно описать известным степенным законом Тициуса-Боде, выведенным в конце XVIII века, где показателем степени служит порядковый номер планеты. Эта зависимость не имеет какого-либо физического содержания и для лучшего согласования с наблюдаемым распределением планетных расстояний приходится "подгонять" порядковые номера планет. Например, в некоторых видах формулы Тициуса-Боде для Меркурия показатель степени (номер планеты) принимался равным минус бесконечности, для Венеры - равным нулю, для Земли - единице и т.д. Несмотря на такие ухищрения, при больших расстояниях от Солнца закон оказывался неприменимым и отклонения вычисленных размеров орбит Нептуна и Плутона от наблюдаемых очень велики. Несомненно положительным результатом использования эмпирических соотношений, вытекавших из закона Тициуса-Боде, стало обнаружение Цереры и других малых планет, образующих пояс астероидов на расстоянии, где согласно закону должна была располагаться следующая за Землей большая планета. Сравнение "предвычисляемых" по закону Тициуса-Боде и действительных расстояний планет от Солнца показано на рис. 3. Расстояния представлены в астрономических единицах (1 а.е. - среднее расстояние Земли от Солнца, равное 149,6 млн. км). Кривая 1 показывает результаты расчетов по формуле Тициуса-Боде.


Рис. 3. Сравнение вычисляемых и наблюдаемых расстояний планет от Солнца: 1 - формуле Тициуса-Боде, 2 - по формуле Фесенкова.

 

В конце 50-х годов XX века В.Г. Фесенков предложил следующую зависимость между расстояниями планет от Солнца и их относительной массой:

Ln = Ln-1 [1 + K (Mn/Ms)1/3],

 

где Mn - масса планеты, Ms - масса Солнца, K - постоянный коэффициент. Результаты вычислений по формуле Фесенкова представлены кривой 2 на рис. 3. Эта же зависимость успешно воспроизводит распределение расстояний в системах спутников планет-гигантов.

В последовательности на рис. 1 спутники планет расположились довольно компактной группой, несмотря на разную природу образующего их вещества. За исключением нашей Луны, средняя плотность которой 3,34 г/см3, и спутников Юпитера Ио и Европа (плотность которых 3,57 и 2,97 г/см3, соответственно), большинство спутников планет-гигантов состоят из льда с различными по массе примесями силикатных пород и характеризуются плотностью 1 - 2 г/см3. По соотношению масс и размеров с группой спутников планет тесно смыкаются наиболее крупные из астероидов. Резким исключением выглядят спутники Марса, массы и размеры которых более соответствуют астероидам, чем типичным спутникам больших планет. Возможно, Фобос и Деймос были захвачены Марсом из пояса астероидов.

Конечно, на диаграмме показаны не все, а только наиболее типичные малые тела, соответствующие параметры которых к настоящему времени известны. Подобной избирательностью следует объяснить разрыв между наименьшими астероидами и наиболее крупными метеоритами, которого в действительности, по-видимому, не существует.

Весьма примечательно, что кометы, имеющие аномально низкую плотность вещества ядер (около 0,6 г/см3), тесно примыкают к общей последовательности, дополняя ее, несмотря на уникальную природу этих тел и полную неясность их происхождения. На диаграмме показаны лишь некоторые из комет, наблюдавшихся во внутренней части Солнечной системы. Однако, исторически короткий период наших наблюдений за небесными явлениями не позволяет говорить, что эти данные полностью исчерпывают сведения о существующих в природе кометных телах. Велика вероятность того, что на окраинах Солнечной системы находится резервуар гигантских по размерам и массам комет, которые могли посещать окрестности Солнца задолго до нашего появления. Вполне возможно, что именно об этом говорят некоторые загадочные образования на поверхности таких безатмосферных тел, как Луна или Меркурий, способных сохранять следы самых древних событий в истории планет.

Наблюдения нескольких последних лет обнаружили более 30 объектов, названных транснептуновыми. Размеры этих тел, предположительно имеющих сходство с ядрами комет, превосходят 100 км. Согласно общим оценкам, вытекающим из подобных результатов, на расстоянии между 30 и 50 а.е. от Солнца находится около 70000 тел с размерами от 100 до 400 км.

На последовательности, представленной на рис. 1, эти гипотетические объекты заняли бы промежуток между наиболее крупными из известных комет и ледяными спутниками планет-гигантов, располагаясь несколько выше астероидов аналогичного размера.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.