ПрОМ содержит фотодиод, каскады электрических усилителей, устройства коррекции и обработки цифрового сигнала.
Принцип построения ПрОМ зависит от применяемого метода детектирования.
Различают прямое фотодетектирование и детектирование с преобразованием. Выбор метода детектирования определяется принципом модуляции оптического сигнала.
При прямом детектировании оптический сигнал подается непосредственно на фотодиод, в котором электрический сигнал формируется в виде изменяющегося фототока. Так как фотодиоды чувствительны к потоку фотонов и не воспринимают фазу воздействующего оптического излучения, то метод применяется при модуляции интенсивности.
Рисунок 4.6 - Обобщенная схема ПрОМ с прямым фотодетектированием
Назначение блоков:
ОУ – увеличивает мощность оптического сигнала.
ФД – преобразует оптический сигнал в электрический.
ГУс – главный усилитель, обеспечивает усиление сигнала до уровня необходимого для нормального функционирования последующих устройств. В качестве усилительных устройств применяются интегрирующие (ИУ) и трансимпедансные электрические усилители (ТИУ). Работой усилителя управляет АРУ.
АРУ - обеспечивает регулировку динамического диапазона путем изменения коэффициента усиления ГУс или коэффициента лавинного умножения ЛФД.
К – корректор обеспечивает коррекцию АЧХ линейного тракта, а также устраняет искажения, вносимые входной цепью ПрОМ.
РУ – решающее устройство путем сравнения входного сигнала с пороговым напряжением формирует сигнал логической единицы или нуля.
ВТЧ – выделитель тактовой частоты формирует тактовую стробирующую последовательность для регенерации сигнала и работы демультиплексирующих устройств.
В методе детектирования с преобразованием для определения фазы в принимаемый сигнал замешивают когерентное и стабильное излучение от эталонного источника, которым является опорный оптический генератор (ООГ). В результате смешения когерентных оптических сигналов возникают биения, которые регистрируются фотодиодом и содержат информацию об интенсивности и фазе принимаемого сигнала. Этот метод приема также называют когерентным, так как он применяется при построении когерентных ВОСП. Данные ВОСП разрабатываются как системы сверхдальней связи.
Если lс=lоог – это гомодинный прием, а lс¹lоог - гетеродинный прием.
Рисунок 4.7 - Обобщенная структурная схема ПрОМ при детектировании с преобразованием
Принимаемый оптический сигнал и сигнал от ООГ взаимодействуют в оптическом смесителе (ОС). Необходимым условием когерентного приема является синхронизация принимаемого сигнала и излучения гетеродина. То есть поляризация этих сигналов должна быть одинакова, а фазы согласованы. Поэтому повышаются требования к компонентам. Лазеры должны быть узкополосными, иметь минимальные флуктуации фазы и интенсивности излучения. Лазер-гетеродин должен быть синхронизован по фазе и частоте с принимаемым оптическим сигналом. Подстройка длинны волны lоог производится автоподстройкой частоты (АПЧ). При гомодинном приеме дополнительно требуется фазовая автоподстройка частоты (ФАПЧ). Для контроля поляризации сигнала, если не применяется волокно с сохранением поляризации (PANDA) на приеме устанавливается поляризационный контроллер (ПК).
В результате взаимодействия двух оптический сигналов на выходе ФД выделяется сигнал промежуточной частоты (ПЧ), из которого с помощью демодулятора (ДМ) выделяется электрический информационный сигнал.