Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Распределенная магистраль на коммутаторах



В сетях больших зданий или кампусов структура с коллапсированной магистралью не всегда рациональна или возможна. Такая структура приводит к протяженным кабельным системам, связывающим конечные узлы или коммутаторы сетей рабочих групп с центральным коммутатором, шина которого и является магистралью сети. Высокая плотность кабелей и их высокая стоимость ограничивают применение стянутой в точку магистрали в таких сетях. Иногда, особенно в сетях кампусов, просто невозможно стянуть все кабели в одно помещение из-за ограничений на длину связей, накладываемых технологией (например, все реализации технологий локальных сетей на витой паре ограничивают протяженность кабелей в 100 м).

Поэтому в локальных сетях, покрывающих большие территории, часто используется другой вариант построения сети - с распределенной магистралью. Пример такой сети приведен на рис. 4.45.

Рис. 4.45. Структура сети с распределенной магистралью

Распределенная магистраль - это разделяемый сегмент сети, поддерживающий определенный протокол, к которому присоединяются коммутаторы сетей рабочих групп и отделов. На примере распределенная магистраль построена на основе двойного кольца FDDI, к которому подключены коммутаторы этажей. Коммутаторы этажей имеют большое количество портов Ethernet, трафик которых транслируется в трафик протокола FDDI, когда он передается по магистрали с этажа на этаж.

Распределенная магистраль упрощает связи между этажами, сокращает стоимость кабельной системы и преодолевает ограничения на расстояния.

Однако скорость магистрали в этом случае будет существенно ниже скорости магистрали на внутренней шине коммутатора. Причем скорость эта фиксированная и в настоящее время чаще всего не превышает 100 Мбит/с. Поэтому распределенная магистраль может применяться только при невысокой интенсивности трафика между этажами или зданиями. Широкое распространение в недалеком будущем технологии Gigabit Ethernet может снять это ограничение, что очень положительно скажется на структуре крупных сетей.

Пример на рис. 4.45 демонстрирует сочетание двух базовых структур, так как на каждом этаже сеть построена с использованием магистрали на внутренней шине коммутатора.

Выводы

· Коммутаторы связывают процессоры портов по трем основным схемам - коммутационная матрица, общая шина и разделяемая память. В коммутаторах с фиксированным количеством портов обычно используется коммутационная матрица, а в модульных коммутаторах - сочетание коммутационной матрицы в отдельных модулях с общей шиной и разделяемой памятью для связи модулей.

· Для поддержания неблокирующего режима работы коммутатора общая шина или разделяемая память должны обладать производительностью, превышающей сумму производительностей всех портов максимально высокоскоростного набора модулей, которые устанавливаются в шасси.

· Основными характеристиками производительности коммутатора являются: скорость фильтрации кадров, скорость продвижения кадров, общая пропускная способность по всем портам в мегабитах в секунду, задержка передачи кадра.

· На характеристики производительности коммутатора влияют: тип коммутации - «на лету» или с полной буферизацией, размер адресной таблицы, размер буфера кадров.

· Для автоматического поддержания резервных связей в сложных сетях в коммутаторах реализуется алгоритм покрывающего дерева - Spanning Tree Algorithm. Этот алгоритм основан на периодической генерации служебных кадров, с помощью которых выявляются и блокируются петлевидные связи в сети.

· Коммутаторы могут объединять сегменты разных технологий локальных сетей, транслируя протоколы канального уровня в соответствии со спецификацией IEEE 802.1Н. Единственным ограничением трансляции является использование MTU одного размера в соединяемых сегментах.

· Коммутаторы поддерживают разнообразные пользовательские фильтры, основанные на МАС - адресах, а также на содержимом полей протоколов верхних уровней. В последнем случае администратор должен выполнить большой объем ручной работы по заданию положения поля относительно начала кадра и его требуемому значению. Обычно фильтры допускают комбинацию нескольких условий с помощью логических операторов AND и OR.

· Коммутаторы обеспечивают поддержку качества обслуживания с помощью приоритетной обработки кадров. Стандарт 802.1р определяет дополнительное поле, состоящее из 3 бит, для хранения приоритета кадра независимо от технологии сети.

· Технология виртуальных локальных сетей (VLAN) позволяет в сети, построенной на коммутаторах, создать изолированные группы узлов, между которыми не передается любой тип трафика, в том числе и широковещательный. Виртуальные сети являются основой для создания крупных маршрутизируемых сетей и имеют преимущество перед физически изолированными сегментами гибкостью состава, изменяемого программным путем.

· В последнее время наблюдается отчетливая тенденция вытеснения коммутаторами концентраторов с нижних уровней крупных сетей.

· Существуют две основные схемы применения коммутаторов: со стянутой в точку магистралью и с распределенной магистралью. В больших сетях эти схемы применяют комбинированно.

Вопросы и упражнения

1. Что такое структурированная кабельная система?

2. Укажите в таблице применимость того или иного типа кабеля для разных подсистем.

3. Что означает термин backbone?

4. Как влияет на производительность сети пропускная способность сетевого адаптера и пропускная способность порта концентратора?

5. Имеются ли отличия в работе сетевых адаптеров, соединяющих компьютер с коммутатором или с мостом, или с концентратором?

6. Как концентратор поддерживает резервные связи?

7. В соответствии с основной функцией концентратора - повторением сигнала -его относят к устройствам, работающим на физическом уровне модели OSI. Приведите примеры дополнительных функций концентратора, для выполнения которых концентратору требуется информация протоколов более высоких уровней?

8. Чем модульный концентратор отличается от стекового?

9. Почему для соединения концентраторов между собой используются специальные порты?

10. Каким образом мост/коммутатор строит свою внутреннюю таблицу?

11. Что случится, если во время работы моста/коммутатора произойдет реконфигурация сети, например будут подключены новые компьютеры?

12. О чем говорит размер внутренней адресной таблицы моста? Что произойдет, если таблица переполнится?

13. Можно ли утверждать, что у любого моста скорости продвижения не выше скорости фильтрации?

14. Что нужно сделать администратору сети, чтобы мосты, не поддерживающие алгоритм Spanning Tree, правильно работали в сети с петлями?

15. Что произойдет, если в сети, построенной на концентраторах, имеются замкнутые контуры (например, как на рис. 4.46)?

Рис. 4.46. Сеть с петлями, построенная на концентраторах

A. сеть будет работать нормально;

B. кадры не будут доходить до адресата;

C. в сети при передаче любого кадра будет возникать коллизия;

D. произойдет зацикливание кадров.

16. Какие дополнительные возможности имеют мосты, поддерживающие алгоритм Spanning Tree?

17. В чем отличие между резервированием связей маршрутизаторами, с одной стороны, и мостами, поддерживающими алгоритм Spanning Tree, с другой стороны?

18. Пусть на предприятии имеются две изолированные рабочие группы, в каждой из которых имеется свой сервер. В каких случаях лучше использовать:

o два отдельных концентратора?

o два концентратора, объединенные в стек?

o один общий концентратор с большим количеством портов?

19. Пусть на предприятии в одном отделе установлена одноранговая сеть Windows 95, а в другом отделе - сеть NetWare с одним выделенным сервером. Каждая из сетей построена на основе одного концентратора. Как вы считаете, в каком отделе замена концентратора коммутатором может привести к существенному росту производительности? Рассмотрите следующие варианты замены концентратора на коммутатор:

. концентратор имеет порты 10 Мбит/с, коммутатор имеет все порты 10 Мбит/с;

A. концентратор имеет порты 10 Мбит/с, коммутатор имеет порты 10 Мбит/с и 1 порт 100 Мбит/с;

B. концентратор имеет порты 100 Мбит/с, коммутатор имеет все порты 100 Мбит/с.

20. В области сетевых технологий явно наметилась тенденция к использованию индивидуальных связей компьютеров с коммуникационными устройствами (в отличие от подключения к портам сегментов). С чем это связано?

21. Почему полнодуплексный Ethernet не поддерживается в концентраторах?

22. Каким образом коммутатор может управлять потоком пакетов, поступающих от сетевых адаптеров станций сети?

23. Существуют маршрутизаторы, работающие в режиме моста на некоторых портах. Как вы думаете, можно ли создать маршрутизатор или коммутатор, который способен работать в режиме концентратора на тех же портах, на которых выполняется маршрутизация?

24. Можно ли соединить транслирующим коммутатором сегменты, в которых установлено разное максимальное значение поля данных?

25. Имеется ли специфика в использовании мостов и коммутаторов? Приведите примеры, когда замена моста коммутатором не повышает производительности сети.

26. Почему недорогие коммутаторы, выполняющие ограниченное число функций, обычно работают по быстрому алгоритму обработки пакетов «на лету», а дорогие коммутаторы, с большим числом функций - по более медленному алгоритму буферизации пакетов?

27. Какая информация содержится в таблицах мостов/коммутаторов и маршрутизаторов?

28. Поясните определение: «Виртуальная локальная сеть - это домен распространения широковещательных сообщений».

29. В каких случаях появляется необходимость в создании виртуальных сегментов? Приведите примеры.

Сетевой уровень как средство построения больших сетей

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.