Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Проблема управления потоком данных при полнодуплексной работе



Простой отказ от поддержки алгоритма доступа к разделяемой среде без какой-либо модификации протокола ведет к повышению вероятности потерь кадров коммутаторами, так как при этом теряется контроль за потоками кадров, направляемых конечными узлами в сеть. Раньше поток кадров регулировался методом доступа к разделяемой среде, так что слишком часто генерирующий кадры узел вынужден был ждать своей очереди к среде и фактическая интенсивность потока данных, который направлял в сеть этот узел, была заметно меньше той интенсивности, которую узел хотел бы отправить в сеть. При переходе на полнодуплексный режим узлу разрешается отправлять кадры в коммутатор всегда, когда это ему нужно, поэтому коммутаторы сети могут в этом режиме сталкиваться с перегрузками, не имея при этом никаких средств регулирования («притормаживания») потока кадров.

Причина перегрузок обычно кроется не в том, что коммутатор является блокирующим, то есть ему не хватает производительности процессоров для обслуживания потоков кадров, а в ограниченной пропускной способности отдельного порта, которая определяется временными параметрами протокола. Например, порт Ethernet не может передавать больше 14 880 кадров в секунду, если он не нарушает временных соотношений, установленных стандартом.

Поэтому, если входной трафик неравномерно распределяется между выходными портами, легко представить ситуацию, когда в какой-либо выходной порт коммутатора будет направляться трафик с суммарной средней интенсивностью большей, чем протокольный максимум. На рис. 4.28 изображена как раз такая ситуация, когда в порт 3 коммутатора направляется трафик от портов 1,2,4 и 6, с суммарной интенсивностью в 22 100 кадров в секунду. Порт 3 оказывается загружен на 150 %, Естественно, что когда кадры поступают в буфер порта со скоростью 20 100 кадров в секунду, а уходят со скоростью 14 880 кадров в секунду, то внутренний буфер выходного порта начинает неуклонно заполняться необработанными кадрами.

Рис. 4.28. Переполнение буфера порта из-за несбалансированности трафика

Какой бы ни был объем буфера порта, он в какой-то момент времени обязательно переполнится. Нетрудно подсчитать, что при размере буфера в 100 Кбайт в приведенном примере полное заполнение буфера произойдет через 0,22 секунды после начала его работы (буфер такого размера может хранить до 1600 кадров размером в 64 байт). Увеличение буфера до 1 Мбайт даст увеличение времени заполнения буфера до 2,2 секунд, что также неприемлемо. А потери кадров всегда очень нежелательны, так как снижают полезную производительность сети, и коммутатор, теряющий кадры, может значительно ухудшить производительность сети вместо ее улучшения.

Коммутаторы локальных сетей - не первые устройства, которые сталкиваются с такой проблемой. Мосты также могут испытывать перегрузки, однако такие ситуации при использовании мостов встречались редко из-за небольшой интенсивности межсегментного трафика, поэтому разработчики мостов не стали встраивать в протоколы локальных сетей или в сами мосты механизмы регулирования потока. В глобальных сетях коммутаторы технологии Х.25 поддерживают протокол канального уровня LAP-В, который имеет специальные кадры управления потоком «Приемник готов» (RR) и «Приемник не готов» (RNR), аналогичные по назначению кадрам протокола LLC2 (это не удивительно, так как оба протокола принадлежат семейству протоколов HDLC. Протокол LAP-B работает между соседними коммутаторами сети Х.25 и в том случае, когда очередь коммутатора доходит до опасной границы, запрещает своим ближайшим соседям с помощью кадра «Приемник не готов» передавать ему кадры, пока очередь не уменьшится до нормального уровня. В сетях Х.25 такой протокол необходим, так как эти сети никогда не использовали разделяемые среды передачи данных, а работали по индивидуальным каналам связи в полнодуплексном режиме.

При разработке коммутаторов локальных сетей ситуация коренным образом отличалась от ситуации, при которой создавались коммутаторы территориальных сетей. Основной задачей было сохранение конечных узлов в неизменном виде, что исключало корректировку протоколов локальных сетей. А в этих протоколах процедур управления потоком не было - общая среда передачи данных в режиме разделения времени исключала возникновение ситуаций, когда сеть переполнялась бы необработанными кадрами. Сеть не накапливала данных в каких-либо промежуточных буферах при использовании только повторителей или концентраторов.

ПРИМЕЧАНИЕ Здесь речь идет о протоколах МАС - уровня (Ethernet, Token Ring и т. п.), так как мосты и коммутаторы имеют дело только с ними. Протокол LLC2, который умеет управлять потоком данных, для целей управления потоком кадров в коммутаторах использовать нельзя. Для коммутаторов протокол LLC (все его процедуры: 1,2 и 3) прозрачен, как и все остальные протоколы верхних уровней, - коммутатор не анализирует заголовок LLC, считая его просто полем данных кадра МАС - уровня.

Применение коммутаторов без изменения протокола работы оборудования всегда порождает опасность потери кадров. Если порты коммутатора работают в обычном, то есть в полудуплексном режиме, то у коммутатора имеется возможность оказать некоторое воздействие на конечный узел и заставить его приостановить передачу кадров, пока у коммутатора не разгрузятся внутренние буферы. Нестандартные методы управления потоком в коммутаторах при сохранении протокола доступа в неизменном виде будут рассмотрены ниже.

Если же коммутатор работает в полнодуплексном режиме, то протокол работы конечных узлов, да и его портов все равно меняется. Поэтому имело смысл для поддержки полнодуплексного режима работы коммутаторов несколько модифицировать протокол взаимодействия узлов, встроив в него явный механизм управления потоком кадров.

Работа над выработкой стандарта для управления потоком кадров в полнодуплексных версиях Ethernet и Fast Ethernet продолжалась несколько лет. Такой длительный период объясняется разногласиями членов соответствующих комитетов по стандартизации, отстаивающих подходы фирм, которые реализовали в своих коммутаторах собственные методы управления потоком.

В марте 1997 года принят стандарт IEEE 802.3x на управление потоком в полнодуплексных версиях протокола Ethernet. Он определяет весьма простую процедуру управления потоком, подобную той, которая используется в протоколах LLC2 и LAP-B. Эта процедура подразумевает две команды - «Приостановить передачу» и «Возобновить передачу», которые направляются соседнему узлу. Отличие от протоколов типа LLC2 в том, что эти команды реализуются на уровне символов кодов физического уровня, таких как 4В/5В, а не на уровне команд, оформленных в специальные управляющие кадры. Сетевой адаптер или порт коммутатора, поддерживающий стандарт 802.3x и получивший команду «Приостановить передачу», должен прекратить передавать кадры впредь до получения команды «Возобновить передачу».

Некоторые специалисты высказывают опасение, что такая простая процедура управления потоком окажется непригодной в сетях Gigabit Ethernet. Полная приостановка приема кадров от соседа при такой большой скорости передачи кадров (1 488 090 кадр/с) может быстро вызвать переполнение внутреннего буфера теперь у этого соседа, который в свою очередь полностью заблокирует прием кадров у своих ближайших соседей. Таким образом, перегрузка просто распространится по сети, вместо того чтобы постепенно исчезнуть. Для работы с такими скоростными протоколами необходим более тонкий механизм регулирования потока, который бы указывал, на какую величину нужно уменьшить интенсивность потока входящих кадров в перегруженный коммутатор, а не приостанавливал этот поток до нуля. Подобный плавный механизм регулирования потока появился у коммутаторов АТМ через несколько лет после их появления. Поэтому существует мнение, что стандарт 802.3х - это временное решение, которое просто закрепило существующие фирменные простые механизмы управления потоком ведущих производителей коммутаторов. Пройдет некоторое время, и этот стандарт сменит другой стандарт - более сложный и более приспособленный для высокоскоростных технологий, таких как Gigabit Ethernet.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.