Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Время двойного оборота и распознавание коллизий



Четкое распознавание коллизий всеми станциями сети является необходимым условием корректной работы сети Ethernet. Если какая-либо передающая станция не распознает коллизию и решит, что кадр данных ею передан верно, то этот кадр данных будет утерян. Из-за наложения сигналов при коллизии информация кадра исказится, и он будет отбракован принимающей станцией (возможно, из-за несовпадения контрольной суммы). Скорее всего, искаженная информация будет повторно передана каким-либо протоколом верхнего уровня, например транспортным или прикладным, работающим с установлением соединения. Но повторная передача сообщения протоколами верхних уровней произойдет через значительно более длительный интервал времени (иногда даже через несколько секунд) по сравнению с микросекундными интервалами, которыми оперирует протокол Ethernet. Поэтому если коллизии не будут надежно распознаваться узлами сети Ethernet, то это приведет к заметному снижению полезной пропускной способности данной сети.

Для надежного распознавания коллизий должно выполняться следующее соотношение:

Tmin >=PDV,

где Тmin - время передачи кадра минимальной длины, a PDV - время, за которое сигнал коллизии успевает распространиться до самого дальнего узла сети. Так как в худшем случае сигнал должен пройти дважды между наиболее удаленными друг от друга станциями сети (в одну сторону проходит неискаженный сигнал, а на обратном пути распространяется уже искаженный коллизией сигнал), то это время называется временем двойного оборота (Path Delay Value, PDV).

При выполнении этого условия передающая станция должна успевать обнаружить коллизию, которую вызвал переданный ее кадр, еще до того, как она закончит передачу этого кадра.

Очевидно, что выполнение этого условия зависит, с одной стороны, от длины минимального кадра и пропускной способности сети, а с другой стороны, от длины кабельной системы сети и скорости распространения сигнала в кабеле (для разных типов кабеля эта скорость несколько отличается).

Все параметры протокола Ethernet подобраны таким образом, чтобы при нормальной работе узлов сети коллизии всегда четко распознавались. При выборе параметров, конечно, учитывалось и приведенное выше соотношение, связывающее между собой минимальную длину кадра и максимальное расстояние между станциями в сегменте сети.

В стандарте Ethernet принято, что минимальная длина поля данных кадра составляет 46 байт (что вместе со служебными полями дает минимальную длину кадра 64 байт, а вместе с преамбулой - 72 байт или 576 бит). Отсюда может быть определено ограничение на расстояние между станциями.

Итак, в 10-мегабитном Ethernet время передачи кадра минимальной длины равно 575 битовых интервалов, следовательно, время двойного оборота должно быть меньше 57,5 мкс. Расстояние, которое сигнал может пройти за это время, зависит от типа кабеля и для толстого коаксиального кабеля равно примерно 13 280 м. Учитывая, что за это время сигнал должен пройти по линии связи дважды, расстояние между двумя узлами не должно быть больше 6 635 м. В стандарте величина этого расстояния выбрана существенно меньше, с учетом других, более строгих ограничений.

Одно из таких ограничений связано с предельно допустимым затуханием сигнала. Для обеспечения необходимой мощности сигнала при его прохождении между наиболее удаленными друг от друга станциями сегмента кабеля максимальная длина непрерывного сегмента толстого коаксиального кабеля с учетом вносимого им затухания выбрана в 500 м. Очевидно, что на кабеле в 500 м условия распознавания коллизий будут выполняться с большим запасом для кадров любой стандартной длины, в том числе и 72 байт (время двойного оборота по кабелю 500 м составляет всего 43,3 битовых интервала). Поэтому минимальная длина кадра могла бы быть установлена еще меньше. Однако разработчики технологии не стали уменьшать минимальную длину кадра, имея в виду многосегментные сети, которые строятся из нескольких сегментов, соединенных повторителями.

Повторители увеличивают мощность передаваемых с сегмента на сегмент сигналов, в результате затухание сигналов уменьшается и можно использовать сеть гораздо большей длины, состоящую из нескольких сегментов. В коаксиальных реализациях Ethernet разработчики ограничили максимальное количество сегментов в сети пятью, что в свою очередь ограничивает общую длину сети 2500 метрами. Даже в такой многосегментной сети условие обнаружения коллизий по-прежнему выполняется с большим запасом (сравним полученное из условия допустимого затухания расстояние в 2500 м с вычисленным выше максимально возможным по времени распространения сигнала расстоянием 6635 м). Однако в действительности временной запас является существенно меньше, поскольку в многосегментных сетях сами повторители вносят в распространение сигнала дополнительную задержку в несколько десятков битовых интервалов. Естественно, небольшой запас был сделан также для компенсации отклонений параметров кабеля и повторителей.

В результате учета всех этих и некоторых других факторов было тщательно подобрано соотношение между минимальной длиной кадра и максимально возможным расстоянием между станциями сети, которое обеспечивает надежное распознавание коллизий. Это расстояние называют также максимальным диаметром сети.

С увеличением скорости передачи кадров, что имеет место в новых стандартах, базирующихся на том же методе доступа CSMA/CD, например Fast Ethernet, максимальное расстояние между станциями сети уменьшается пропорционально увеличению скорости передачи. В стандарте Fast Ethernet оно составляет около 210 м, а в стандарте Gigabit Ethernet оно было бы ограничено 25 метрами, если бы разработчики стандарта не предприняли некоторых мер по увеличению минимального размера пакета.

В табл. 3.1 приведены значения основных параметров процедуры передачи кадра стандарта 802.3, которые не зависят от реализации физической среды. Важно отметить, что каждый вариант физической среды технологии Ethernet добавляет к этим ограничениям свои, часто более строгие ограничения, которые также должны выполняться и которые будут рассмотрены ниже.

Таблица 3.1. Параметры уровня MAC Ethernet




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.