Компьютерные сети изначально предназначены для совместного доступа пользователя к ресурсам компьютеров: файлам, принтерам и т. п. Трафик, создаваемый этими традиционными службами компьютерных сетей, имеет свои особенности и существенно отличается от трафика сообщений в телефонных сетях или, например, в сетях кабельного телевидения. Однако 90-е годы стали годами проникновения в компьютерные сети трафика мультимедийных данных, представляющих в цифровой форме речь и видеоизображение. Компьютерные сети стали использоваться для организации видеоконференций, обучения и развлечения на основе видеофильмов и т. п. Естественно, что для динамической передачи мультимедийного трафика требуются иные алгоритмы и протоколы и, соответственно, другое оборудование. Хотя доля мультимедийного трафика пока невелика, он уже начал свое проникновение как в глобальные, так и локальные сети, и этот процесс, очевидно, будет продолжаться с возрастающей скоростью.
Главной особенностью трафика, образующегося при динамической передаче голоса или изображения, является наличие жестких требований к синхронности передаваемых сообщений. Для качественного воспроизведения непрерывных процессов, которыми являются звуковые колебания или изменения интенсивности света в видеоизображении, необходимо получение измеренных и закодированных амплитуд сигналов с той же частотой, с которой они были измерены на передающей стороне. При запаздывании сообщений будут наблюдаться искажения.
В то же время трафик компьютерных данных характеризуется крайне неравномерной интенсивностью поступления сообщений в сеть при отсутствии жестких требований к синхронности доставки этих сообщений. Например, доступ пользователя, работающего с текстом на удаленном диске, порождает случайный поток сообщений между удаленным и локальным компьютерами, зависящий от действий пользователя по редактированию текста, причем задержки при доставке в определенных (и достаточно широких с компьютерной точки зрения) пределах мало влияют на качество обслуживания пользователя сети. Все алгоритмы компьютерной связи, соответствующие протоколы и коммуникационное оборудование были рассчитаны именно на такой «пульсирующий» характер трафика, поэтому необходимость передавать мультимедийный трафик требует внесения принципиальных изменений как в протоколы, так и оборудование. Сегодня практически все новые протоколы в той или иной степени предоставляют поддержку мультимедийного трафика.
Особую сложность представляет совмещение в одной сети традиционного компьютерного и мультимедийного трафика. Передача исключительно мультимедийного трафика компьютерной сетью хотя и связана с определенными сложностями, но вызывает меньшие трудности. А вот случай сосуществования двух типов трафика с противоположными требованиями к качеству обслуживания является намного более сложной задачей. Обычно протоколы и оборудование компьютерных сетей относят мультимедийный трафик к факультативному, поэтому качество его обслуживания оставляет желать лучшего. Сегодня затрачиваются большие усилия по созданию сетей, которые не ущемляют интересы одного из типов трафика. Наиболее близки к этой цели сети на основе технологии АТМ, разработчики которой изначально учитывали случай сосуществования разных типов трафика в одной сети.
Управляемость
Управляемость сети подразумевает возможность централизованно контролировать состояние основных элементов сети, выявлять и разрешать проблемы, возникающие при работе сети, выполнять анализ производительности и планировать развитие сети. В идеале средства управления сетями представляют собой систему, осуществляющую наблюдение, контроль и управление каждым элементом сети - от простейших до самых сложных устройств, при этом такая система рассматривает сеть как единое целое, а не как разрозненный набор отдельных устройств.
Хорошая система управления наблюдает за сетью и, обнаружив проблему, активизирует определенное действие, исправляет ситуацию и уведомляет администратора о том, что произошло и какие шаги предприняты. Одновременно с этим система управления должна накапливать данные, на основании которых можно планировать развитие сети. Наконец, система управления должна быть независима от производителя и обладать удобным интерфейсом, позволяющим выполнять все действия с одной консоли.
Решая тактические задачи, администраторы и технический персонал сталкиваются с ежедневными проблемами обеспечения работоспособности сети. Эти задачи требуют быстрого решения, обслуживающий сеть персонал должен оперативно реагировать на сообщения о неисправностях, поступающих от пользователей или автоматических средств управления сетью. Постепенно становятся заметны более общие проблемы производительности, конфигурирования сети, обработки сбоев и безопасности данных, требующие стратегического подхода, то есть планирования сети. Планирование, кроме этого, включает прогноз изменений требований пользователей к сети, вопросы применения новых приложений, новых сетевых технологий и т. п.
Полезность системы управления особенно ярко проявляется в больших сетях: корпоративных или публичных глобальных. Без системы управления в таких сетях нужно присутствие квалифицированных специалистов по эксплуатации в каждом здании каждого города, где установлено оборудование сети, что в итоге приводит к необходимости содержания огромного штата обслуживающего персонала.
В настоящее время в области систем управления сетями много нерешенных проблем. Явно недостаточно действительно удобных, компактных и многопротокольных средств управления сетью. Большинство существующих средств вовсе не управляют сетью, а всего лишь осуществляют наблюдение за ее работой. Они следят за сетью, но не выполняют активных действий, если с сетью что-то произошло или может произойти. Мало масштабируемых систем, способных обслуживать как сети масштаба отдела, так и сети масштаба предприятия, - очень многие системы управляют только отдельными элементами сети и не анализируют способность сети выполнять качественную передачу данных между конечными пользователями сети.
Совместимость
Совместимость или интегрируемость означает, что сеть способна включать в себя самое разнообразное программное и аппаратное обеспечение, то есть в ней могут сосуществовать различные операционные системы, поддерживающие разные стеки коммуникационных протоколов, и работать аппаратные средства и приложения от разных производителей. Сеть, состоящая из разнотипных элементов, называется неоднородной или гетерогенной, а если гетерогенная сеть работает без проблем, то она является интегрированной. Основной путь построения интегрированных сетей - использование модулей, выполненных в соответствии с открытыми стандартами и спецификациями.
Выводы
Качество работы сети характеризуют следующие свойства: производительность, надежность, совместимость, управляемость, защищенность, расширяемость и масштабируемость.
Существуют два основных подхода к обеспечению качества работы сети. Первый - состоит в том, что сеть гарантирует пользователю соблюдение некоторой числовой величины показателя качества обслуживания. Например, сети frame relay и АТМ могут гарантировать пользователю заданный уровень пропускной способности. При втором подходе (best effort) сеть старается по возможности более качественно обслужить пользователя, но ничего при этом не гарантирует.
К основным характеристикам производительности сети относятся: время реакции, которое определяется как время между возникновением запроса к какому-либо сетевому сервису и получением ответа на него; пропускная способность, которая отражает объем данных, переданных сетью в единицу времени, и задержка передачи, которая равна интервалу между моментом поступления пакета на вход какого-либо сетевого устройства и моментом его появления на выходе этого устройства.
Для оценки надежности сетей используются различные характеристики, в том числе: коэффициент готовности, означающий долю времени, в течение которого система может быть использована; безопасность, то есть способность системы защитить данные от несанкционированного доступа; отказоустойчивость - способность системы работать в условиях отказа некоторых ее элементов.
Расширяемость означает возможность сравнительно легкого добавления отдельных элементов сети (пользователей, компьютеров, приложений, сервисов), наращивания длины сегментов сети и замены существующей аппаратуры более мощной.
Масштабируемость означает, что сеть позволяет наращивать количество узлов и протяженность связей в очень широких пределах, при этом производительность сети не ухудшается.
Прозрачность - свойство сети скрывать от пользователя детали своего внутреннего устройства, упрощая тем самым его работу в сети.
Управляемость сети подразумевает возможность централизованно контролировать состояние основных элементов сети, выявлять и разрешать проблемы, возникающие при работе сети, выполнять анализ производительности и планировать развитие сети.
Совместимость означает, что сеть способна включать в себя самое разнообразное программное и аппаратное обеспечение.
Вопросы и упражнения
1. Чем можно объяснить тот факт, что глобальные сети появились раньше, чем локальные?
2. Поясните использование термина «сеть» в следующих предложениях:
сеть нашего предприятия включает сеть Ethernet и сеть Token Ring;
маршрутизатор - это устройство, которое соединяет сети;
чтобы получить выход в Internet, необходимо получить у поставщика услуг Internet номер сети;
в последнее время IP-сети становятся все более распространенными;
гетерогенность корпоративной сети приводит к тому, что на первый план часто выходит проблема согласования сетей.
3. Всякое ли приложение, выполняемое в сети, можно назвать сетевым?
4. Что общего и в чем отличие между взаимодействием компьютеров в сети и взаимодействием компьютера с периферийным устройством?
5. Как распределяются функции между сетевым адаптером и его драйвером?
6. Поясните значения терминов «клиент», «сервер», «редиректор».
7. Назовите главные недостатки полносвязной топологии, а также топологий типа общая шина, звезда, кольцо.
8. Какую топологию имеет односегментная сеть Ethernet, построенная на основе концентратора: общая шина или звезда?
9. Какие из следующих утверждений верны:
A. разделение линий связи приводит к повышению пропускной способности канала;
B. конфигурация физических связей может совпадать с конфигурацией логических связей;
C. главной задачей службы разрешения имен является проверка сетевых имен и адресов на допустимость;
D. протоколы без установления соединений называются также дейтаграммными протоколами.
1. Определите функциональное назначение основных типов коммуникационного оборудования - повторителей, концентраторов, мостов, коммутаторов, маршрутизаторов.
2. В чем отличие логической структуризации сети от физической?
3. Если все коммуникационные устройства в приведенном ниже фрагменте сети (рис. 1.34) являются концентраторами, то на каких портах появится кадр, если его отправил компьютер А компьютеру В? Компьютеру С? Компьютеру D?
Рис. 1.34. Фрагмент сети
4. Если в предыдущем упражнении изменить условия и считать, что все коммуникационные устройства являются коммутаторами, то на каких портах появится кадр, посланный компьютером А компьютеру В? Компьютеру С? Компьютеру D?
5. Что такое «открытая система»? Приведите примеры закрытых систем.
6. Поясните разницу в употреблении терминов «протокол» и «интерфейс» применительно к многоуровневой модели взаимодействия устройств в сети.
7. Что стандартизует модель OSI?
8. Что стандартизует стек OSI?
9. Почему в модели OSI семь уровней?
10. Дайте краткое описание функций каждого уровня и приведите примеры стандартных протоколов для каждого уровня модели OSI.
11. Являются ли термины «спецификация» и «стандарт» синонимами?
12. Какая организация разработала основные стандарты сетей Ethernet и Token Ring?
13. Из приведенной ниже последовательности названий стандартных стеков коммуникационных протоколов выделите названия, которые относятся к одному и тому же стеку: TCP/IP, Microsoft, IPX/SPX, Novell, Internet, DoD, NetBIOS/SMB, DECnet.
14. В чем состоит отличие локальных сетей от глобальных на уровне служб? На уровне транспортной системы?
15. Назовите наиболее часто используемые характеристики производительности сети?
16. Что важнее для передачи мультимедийного трафика: надежность или синхронность?
17. Поясните значение некоторых сетевых характеристик, названия которых помещены в англоязычном написании:
availability;
fault tolerance;
security;
extensibility;
scalability;
transparency.
Основы передачи дискретных данных
Любая сетевая технология должна обеспечить надежную и быструю передачу дискретных данных по линиям связи. И хотя между технологиями имеются большие различия, они базируются на общих принципах передачи дискретных данных, которые рассматриваются в этой главе. Эти принципы находят свое воплощение в методах представления двоичных единиц и нулей с помощью импульсных или синусоидальных сигналов в линиях связи различной физической природы, методах обнаружения и коррекции ошибок, методах компрессии и методах коммутации.
Линии связи
Типы линий связи
Линия связи (рис. 2.1) состоит в общем случае из физической среды, по которой передаются электрические информационные сигналы, аппаратуры передачи данных и промежуточной аппаратуры. Синонимом термина линия связи (line) является термин канал связи(channel).
Рис. 2.1. Состав линии связи
Физическая среда передачи данных (medium) может представлять собой кабель, то есть набор проводов, изоляционных и защитных оболочек и соединительных разъемов, а также земную атмосферу или космическое пространство, через которые распространяются электромагнитные волны.
В зависимости от среды передачи данных линии связи разделяются на следующие (рис. 2.2.):
· проводные (воздушные);
· кабельные (медные и волоконно-оптические);
· радиоканалы наземной и спутниковой связи.
Рис. 2.2. Типы линий связи
Проводные (воздушные) линии связи представляют собой провода без каких-либо изолирующих или экранирующих оплеток, проложенные между столбами и висящие в воздухе. По таким линиям связи традиционно передаются телефонные или телеграфные сигналы, но при отсутствии других возможностей эти линии используются и для передачи компьютерных данных. Скоростные качества и помехозащищенность этих линий оставляют желать много лучшего. Сегодня проводные линии связи быстро вытесняются кабельными.
Кабельные линии представляют собой достаточно сложную конструкцию. Кабель состоит из проводников, заключенных в несколько слоев изоляции: электрической, электромагнитной, механической, а также, возможно, климатической. Кроме того, кабель может быть оснащен разъемами, позволяющими быстро выполнять присоединение к нему различного оборудования. В компьютерных сетях применяются три основных типа кабеля: кабели на основе скрученных пар медных проводов, коаксиальные кабели с медной жилой, а также волоконно-оптические кабели.
Скрученная пара проводов называется витой парой (twisted pair). Витая пара существует в экранированном варианте (Shielded Twistedpair, STP), когда пара медных проводов обертывается в изоляционный экран, и неэкранированном (Unshielded Twistedpair, UTP), когда изоляционная обертка отсутствует. Скручивание проводов снижает влияние внешних помех на полезные сигналы, передаваемые по кабелю. Коаксиальный кабель (coaxial) имеет несимметричную конструкцию и состоит из внутренней медной жилы и оплетки, отделенной от жилы слоем изоляции. Существует несколько типов коаксиального кабеля, отличающихся характеристиками и областями применения - для локальных сетей, для глобальных сетей, для кабельного телевидения и т. п. Волоконно-оптический кабель (optical fiber) состоит из тонких (5-60 микрон) волокон, по которым распространяются световые сигналы. Это наиболее качественный тип кабеля - он обеспечивает передачу данных с очень высокой скоростью (до 10 Гбит/с и выше) и к тому же лучше других типов передающей среды обеспечивает защиту данных от внешних помех.
Радиоканалы наземной и спутниковой связи образуются с помощью передатчика и приемника радиоволн. Существует большое количество различных типов радиоканалов, отличающихся как используемым частотным диапазоном, так и дальностью канала. Диапазоны коротких, средних и длинных волн (KB, СВ и ДВ), называемые также диапазонами амплитудной модуляции (Amplitude Modulation, AM) по типу используемого в них метода модуляции сигнала, обеспечивают дальнюю связь, но при невысокой скорости передачи данных. Более скоростными являются каналы, работающие на диапазонах ультракоротких волн (УКВ), для которых характерна частотная модуляция (Frequency Modulation, FM), а также диапазонах сверхвысоких частот (СВЧ или microwaves). В диапазоне СВЧ (свыше 4 ГГц) сигналы уже не отражаются ионосферой Земли и для устойчивой связи требуется наличие прямой видимости между передатчиком и приемником. Поэтому такие частоты используют либо спутниковые каналы, либо радиорелейные каналы, где это условие выполняется.
В компьютерных сетях сегодня применяются практически все описанные типы физических сред передачи данных, но наиболее перспективными являются волоконно-оптические. На них сегодня строятся как магистрали крупных территориальных сетей, так и высокоскоростные линии связи локальных сетей. Популярной средой является также витая пара, которая характеризуется отличным соотношением качества к стоимости, а также простотой монтажа. С помощью витой пары обычно подключают конечных абонентов сетей на расстояниях до 100 метров от концентратора. Спутниковые каналы и радиосвязь используются чаще всего в тех случаях, когда кабельные связи применить нельзя - например, при прохождении канала через малонаселенную местность или же для связи с мобильным пользователем сети, таким как шофер грузовика, врач, совершающий обход, и т. п.