Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

ЗАЩИТНЫЕ РЕАКЦИИ ОРГАНИЗМА



 

Под термином «защитные реакции организма» скрываются два понятия: приспособительные функции и собственно защит­ные реакции. Первое, более широкое понятие определяет сте­пень приспособленности (адаптивности) организма как биологи­ческой системы вида к среде, второе — относится к способнос­тям организма защищать себя от негативного воздействия среды.

Собственно защитные реакции организма включают в себя си­стему иммунитета, воспаление, гипертрофию, регенерацию и ин­капсуляцию.

ИММУНИТЕТ

 

Иммунитет является одним из основных защитных свойств организма. Он направлен против чужеродных веществ и организ­мов (антигенов), а также против собственных физиологически не­полноценных элементов. Различают две основные формы имму­нитета: врожденный и приобретенный.

Врожденный иммунитет определяется генетически обусловлен­ными морфологическими и биохимическими особенностями того или иного вида животных. Он проявляется в видовой, возрастной и индивидуальной устойчивости рыб к возбудителям заболеваний. Напряженность его значительно выше приобретенного, но она не является статической величиной и претерпевает различные коле­бания.

Приобретенный иммунитет подразделяется на активный и пас­сивный. Активный иммунитет формируется после повторных воз­действий на организм того или иного антигенного раздражения, отдаленных друг от друга различными интервалами времени, пас­сивный — с помощью введения готовых антител.

В основе врожденной и приобретенной устойчивости лежит механизм взаимодействия многих гуморальных и клеточных факторов иммунитета, направленных на сохранение постоянства вНутренней среды организма на всех этапах индивидуального раз­вития. Эта сложная система защитных факторов включается под влиянием антигенного раздражителя и направлена на его разруше­ние и выведение из организма.

Прежде всего, патогену необходимо преодолеть физические и химические барьеры, составляющие первую линию зашиты против инвазии патогена. Особая роль отводится эпителиальным покро­вам кожи, жабр и пищеварительного тракта, которые в норме на­ряду с осморегуляцией играют важную роль в качестве механиче­ских средств противомикробной и противовирусной защиты.

Не менее важной функцией эпителиальных слоев является продукция слизи, вырабатываемой слизистыми клетками. Слизь механически препятствует колонизации микроорганизмов на эпи­телиальных поверхностях, о чем свидетельствует усиление ее продукции в стрессовых условиях и под воздействием возбудителей инфекций. Кроме того, она имеет сложный биохимический состав, благодаря которому приобретает бактериолитические, антивирус­ные, противогрибковые и антипаразитарные свойства. Подобные характеристики слизи объясняются присутствием в ней ряда гумо­ральных факторов иммунитета: лизоцима, С-реактивного белка, иммуноглобулинов и комплемента.

Все механизмы первой линии защиты неспецифичны и не обеспечивают развитие памяти к антигену в иммунной системе хозяина.

Лизоцим — низкомолекулярный белок, обладающий выражен­ными ферментативными свойствами, молекула которого харак­теризуется высоким содержанием основных и дикарбоновых аминокислот. Лизоцим присутствует в сыворотке и слизи рыб, но в основном он ассоциируется с лейкоцитами (моноцитами, нейт-рофилами, макрофагами) и обогащенными данными группами клеток тканями.

Лизоцим обладает антибактериальными свойствами, в основ­ном относительно грамположительных бактерий, вызывая лизис микроорганизмов путем гидролиза нерастворимых полисахаридов клеточной оболочки или опсонизации патогена.

С-реактивный белок (СРБ) выделяется как из крови, так и из слизи рыб. Биологические свойства данного протеина до конца не изучены. Тем не менее, имеются данные о том, что СРБ участвует в фагоцитозе, опсонизируя антигены; взаимодействует с компли­ментарной системой, выступая в роли ее активатора; способствует лизису бактерий; повышает подвижность лейкоцитов и, что осо­бенно важно, выступает в качестве «скрепляющего» компонента, агглютинируя патогены и препятствуя распространению инфек­ции.

Процессы, обеспечивающие вторую линию защиты, активизи­руются только при внедрении патогена. Подобные механизмы функционируют на низком уровне специфичности и способны обеспечить развитие кратковременной памяти к антигену.

Кровь, лимфа и ткани рыб содержат множество различных ве­ществ, обладающих выраженным противомикробным действием (интерферон, хитиназа, С-реактивный белок и др.). Они различа­ются по химической природе и структуре и характеризуются опре­деленной избирательностью. Комплекс данных веществ создает мощный гуморальный барьер. Так, например, бактерицидная ак­тивность сыворотки крови обеспечивается комплексным действи­ем пропердина, комплемента, лизоцима и 3-лизина.

Интерферон — низкомолекулярный клеточный белок, который синтезируется под влиянием различных индукторов, получивших название интерфероногенов. Основная функция интерферона в иммунной системе костистых рыб — противовирусная. Обладая ярко выраженным ингибирующим влиянием на размножение ви­русов в чувствительных тканях, он прерывает процесс трансляции РНК, нарушая тем самым синтез вирусного белка.

Хитиназа — внеклеточный фермент, локализованный в лим-фоидных тканях рыб. У рыб-зоопланктонофагов большое коли­чество хитиназы обнаружено в слизистой кишечника, поджелу­дочной железе и крови. Помимо основной, пищеварительной функции, хитиназа способна выполнять и защитную, предохра­няя рыб от поражения хитинсодержащими грибами и от инвазии паразитами.

Система комплемента является важнейшим фактором резис­тентности организма в условиях как врожденного, так и приобре­тенного иммунитета. Комплементом называют сложный комплекс белков (около 20), образующих каскадные системы, формирую­щие быстрый многократно усиленный ответ на первичный сигнал. При этом продукт одной реакции служит катализатором последу­ющей.

В иммунном ответе рыб система комплемента участвует в реак­ции антиген-антитело, определяя скорость, характер и выражен­ность иммунной агрессии; в фагоцитозе активизирует фагоциты и опсонизирует антигены; лизирует бактериальные и другие чуже­родные клетки, встраиваясь в их поверхностную мембрану. В на­стоящее время у рыб описаны три компонента комплемент-комп­лекса: О, СЗ, С5 и один промежуточный комплекс ЕА С 1, 2, 4.

Результатом деятельности факторов второй линии защиты рыб являются воспаление и фагоцитоз.

Барьерная функция воспаления препятствует распространению возбудителя заболевания из одного участка организма в другой. При этом в его очаге происходят значительные физико-химичес­кие изменения, носящие защитный характер. Избирательно меня­ется проницаемость кровеносных сосудов, в результате чего из со­судистого русла в очаг воспаления происходит выход белков и лейкоцитов. Отложения фибрина препятствуют дальнейшему продвижению инфекционного агента и становятся дополнительным избирательным фильтром. Основной реакцией организма, опреде­ляющей защитную роль воспаления, является фагоцитоз.

Фагоцитоз подразумевает под собой захват и переваривание микроорганизмов и других чужеродных антигенов с последующим освобождением организма от их конечных продуктов распада.

Основную фагоцитарную функцию в организме рыб несут на себе макрофаги и в меньшей степени микрофаги (фагоциты) — нейтрофилы и моноциты (см. цв. вкл. табл. II).

Прикрепление микроорганизма к поверхности фагоцита (адге­зия) происходит путем примитивного механизма узнавания, осно­ванного на взаимодействии углеводных остатков. Прикрепившая­ся к поверхностной мембране фагоцита частица инициирует фазу поглощения, которая происходит за счет образования псевдопо­дий, с последующим полным заключением в вакуоль (фагосому). Фагоцитоз может быть завершенным, когда возбудитель перевари­вается в фагосоме, или незавершенным, когда возбудитель в ней только изолируется, но сохраняет свою жизнеспособность и даже размножается. Этот защитный механизм очень неустойчив, и при неблагоприятных условиях сохранившие жизнеспособность мик­роорганизмы могут вызывать обострение заболевания.

Механизмы, составляющие третью линию защиты организма рыб, являются высокоспецифичными иммунными реакциями. В от­вет на проникновение патогенов и чужеродных веществ (антиге­нов) в организме рыб вырабатываются антитела или антителопо-добные структуры (рецепторы). Антитела циркулируют в орга­низме, а рецепторы находятся на поверхности так называемых сенсибилизированных клеток. Основной особенностью антител и рецепторов сенсибилизированных клеток является наличие в их молекуле участков (активных центров), точно соответствующих (специфичных) определенным участкам (детерминантам) в моле­куле антигена. Третья линия защиты обеспечивается посредством лимфоидных клеток, индуцирующих возникновение иммунной памяти.

В общих чертах активизация подобной защиты происходит сле­дующим образом:

1. Воздействие антигена на организм стимулирует определен­ное число предетерминированных лимфоцитов, способных рас­познавать антиген посредством специфичных к нему рецепторов.

2. Под действием стимуляции происходит пролиферация клона лимфоцитов с дифференциацией дочерних клеток, которые в свою очередь несут на себе определенную функцию в зависимости от популяции.

У рыб скопления лимфоцитов находятся в тимусе, головной и туловищной почках, селезенке и в стенках кишечника. При этом выделяют две основные их популяции: Т- (тимус-зависимые) и В-лимфоциты, чаще всего ассоциирующиеся у рыб с почками. Функции вышеуказанных популяций лимфоцитов весьма пол­но изучены у теплокровных и в меньшей степени у рыб:

1) В-лимфоциты являются продуцентами антител или иммуно­глобулинов;

2) Т-лимфоциты, не продуцируя антитела, дифференциру­ются на несколько типов функциональных клеток, включающих в себя: цитотоксические «клетки-киллеры», непосредственно участвующие в лизисе чужеродных частиц; «лимфокин-проду-цирующие клетки», усиливающие неспецифическую актив­ность макрофагов посредством продукции лимфокинов (интер-лейкинов); «Т-супрессоры», регулирующие продукцию антител и лимфокинов; «Т-хелперы», или «Т-помощники», взаимодей­ствующие с В-лимфоцитами и усиливающие их ответ на введе­ние антигена;

3) продукция антител требует присутствия третьей клеточной популяции, «перерабатывающей» и «подающей» антиген, которая у рыб представлена макрофагами и моноцитами. Эта фаза иммун­ного ответа протекает при прямом участии молекул главного ком­плекса гистосовместимости, играющего ключевую роль в распоз­навании «чужого» материала.

Пролиферация и дифференцировка иммунокомпетентных кле­ток (лимфоцитов, цитотоксических клеток, моноцитов, макрофа­гов, гранулоцитов) осуществляется у рыб главным образом в поч­ке, селезенке и тимусе.

Воздействие антигена приводит к образованию так называемых Т- и В-клеток памяти, которые при вторичном инфицировании обеспечивают более быструю продукцию антител и в более высо­ких титрах.

По своему происхождению антитела делятся на естественные (нормальные) и приобретенные.

Естественные антитела образуются в ответ на малые количества антигенного раздражителя, т. е. при субклинической инфекции.

К приобретенным антителам относятся все иммуноглобулины, появляющиеся в организме рыб в ответ на введение различных по своей структуре и природе антигенов или в результате перенесе­ния того или иного инфекционного заболевания.

Независимо от своего происхождения антитела относятся к гликопротеидам и содержат различные количества олигосахаридов разного состава и строения. Антитела, образующиеся в организме животных, различаются между собой по первичной структуре по­липептидных цепей, физико-химическим свойствам и антигенной структуре.

Для костистых рыб описан единственный класс иммуноглобу­линов — тетрамерный макроглобулин, подобный иммуноглобули­нам класса М (IgM) млекопитающих. В зависимости от вида рыб его молекулярный вес колеблется от 600 до 800 кД. Некоторые рыбы имеют мономерные или диамерные формы иммуноглобулинов, которые часто обнаруживаются в эпидермальной слизи, ки­шечнике и желчи.

Основными функциями антител являются взаимодействие с антигеном и его инактивация посредством нейтрализации (виру­сы, токсины), агглютинации (бактерии) и преципитации (раство­римые антигены), что в свою очередь усиливает реакцию фагоци­тоза за счет более быстрого распознавания чужеродных частиц и активирует систему комплемента, приводя к лизису чужеродные клетки.

Интенсивность антителообразования определяется видовой ре­активностью организма рыб, температурными условиями среды их обитания, интенсивностью и длительностью антигенного раздра­жения и другими факторами.

Иммунологические методы в аквакультуре используют для ди­агностики и профилактики болезней рыб. В основе диагностики лежат специфические серологические реакции, позволяющие вы­являть антигены и антитела к определенным возбудителям и опре­делять природу возбудителя болезни. В результате взаимодействия специфических антител и антигена образуется комплекс антиген-антитело, или иммунный комплекс (рис. 1).

Методы выявления специфических антител направлены на их взаимодействие с соответствующим антигеном, который называ­ется диагностическим антигеном. Если у обследованной рыбы есть специфические антитела, то они соединятся с диагностичес­ким антигеном и образуют иммунный комплекс. Образование им­мунного комплекса в диагностической реакции сопровождается выпадением осадка, помутнением или другими явлениями и сви­детельствует о том, что ранее рыба была носителем или контакти­ровала с возбудителем.

Чтобы обнаружить антиген (т.е. возбудитель), нужно иметь ди­агностические антитела, которые получают путем иммунизации (т. е. специальным заражением данным возбудителем) животных (рыб, кроликов, мышей и т. д.) или культивирования культур гиб­ридных клеток — гибридом.

Рис. 1. Схема определения антител (а) и антигенов (б)

 

У иммунизированных животных в пе­риод наибольшего содержания антител берут кровь и получают из нее сыворотку, которую называют гипериммунной диагностичес­кой сывороткой. Диагностические моноклональные антитела по­лучают путем культивирования культур гибридных клеток — гиб­ридом. Если у обследуемой рыбы имеется специфический анти­ген, то он связывается с диагностическими антителами и образует иммунный комплекс. За рубежом выпускают целый ряд диагнос­тических наборов (диагностикумов) для особо опасных вирусных и бактериальных инфекций. В последнее время активно разраба­тываются диагностикумы для обнаружения генетического матери­ала патогенов рыб, основанные на методах гибридизации нукло-новых клеток и полимерозной цепной реакции. Однако следует отметить, что эти методы являются творением генной инженерии и при всей их высокой специфичности и чувствительности они не относятся к методам иммунологической диагностики. В нашей стране для промышленного использования рекомендован диагностикум на вибриоз и проводятся производственные испытания диагностикума на весеннюю виремию карпа.

Успешное применение иммунологических исследований нашло отражение в иммунопрофилактике. Для повышения неспецифичес­кой резистентности в организм рыб вводят иммуностимуляторы, которые повышают активность иммунологических реакций, в том числе клеточных и гуморальных факторов иммунитета. В мировой аквакультуре неспецифическая иммунопрофилактика нашла ши­рокое применение. Промышленностью освоено несколько таких препаратов, которые задают рыбе с кормом (левамизол, глюканы, хитозан и др.). Сюда же относится ряд иммуностимулирующих витаминов, доказавших свою эффективность на рыбах (С, Е и А).

Вакцинопрофилактика основана на иммунологической специ­фичности и памяти. Благодаря клеткам памяти иммунная система способна гораздо сильнее отвечать на повторную встречу с дан­ным антигеном. При создании вакцины возбудитель заболевания изменяют таким образом, чтобы он стал безвредным (инактивиру-ют, аттенуируют), но не потерял своей антигенности, либо ис­пользуют изолированные антигены возбудителя. С конца 1980-х годов начало активно развиваться новое направление в вакцинологии рыб — рекомбинантные генно-инженерные вакцины.

В ответ на введение вакцины в организме рыбы вырабатывают­ся специфические антитела. В случае последующего естественного заражения этим возбудителем он рестимулирует клетки памяти, вызывая вторичное, более быстрое и сильное образование анти­тел, которые нейтрализуют возбудителя, образуя иммунный комп­лекс.

Для профилактики особо опасных болезней рыб в мире разра­ботано около 20 вакцинных препаратов, часть из которых рекомендована для лабораторного, а часть — для коммерческого ис­пользования. В производственных условиях применяют вакцины против вибриоза, холодноводного вибриоза, фурункулеза, иерси-ниоза, а также против инфекционного некроза поджелудочной железы и вирусной геморрагической септицемии. В нашей стране хорошие результаты получены при производственных испытаниях биохимической пртивоаэромоидной вакцины ВЮС-2. Ведутся ра­боты по созданию рекомбинантной генно-инженерной вакцины против весенней виремии карпа.

ВОСПАЛЕНИЕ

 

Воспаление — это местная защитная реакция в ткани или орга­не, возникающая в ответ на воздействие повреждающих факторов. Оно относится к деятельности второй линии защиты и присуще всем организмам, на какой бы ступени эволюционной лестницы они не стояли. И. И. Мечников (1917) считал, что это древнейшая «спасительная» реакция живых организмов. Неспособность орга­низма отреагировать на патогенное воздействие воспалительной реакцией грозит гибелью. Воспаление состоит из трех патологи­ческих процессов: повреждения тканей (альтерация), сосудистых изменений (экссудация) и размножения клеточных элементов (пролиферация). В ходе каждого из них в поврежденной ткани проходят важные физиолого-биохимические процессы.

Так, в процессе альтерации (деструктивный процесс) высво­бождается значительное количество химически активных веществ (медиаторов), изменяющих рН среды, стимулирующих деятель­ность фагоцитов, обеспечивающих непрерывность кровотока, и развивается гиперемия.

Процесс экссудации сопровождается нарушением проницаемо­сти кровеносных сосудов, выходом из них жидкой фракции плаз­мы крови и лейкоцитов. В очаге воспаления скапливается значи­тельное количество жидкости и фагоцитирующих клеток. Сюда привлекаются не только лейкоциты (микрофаги), но и макрофаги. В результате экссудации повышается вязкость крови и кровоток замедляется. Нарушается распределение форменных элементов в кровеносных сосудах. Если при нормальном кровотоке формен­ные элементы располагаются по центру сосуда, то после выпотевания плазмы и соответственно увеличения вязкости крови они пе­ремещаются к периферии сосуда. Лейкоциты прилипают к внут­ренней стенке сосуда и затем выходят за его пределы. Вышедшая из кровеносных сосудов жидкость (воспалительный выпот), скап­ливающаяся в каких-либо полостях или тканевых щелях, называ­йся экссудатом, а если она пропитывает ткань — инфильтратом. Экссудат содержит значительное количество белка.

Процесс пролиферации характеризуется активным размноже­нием клеток в основном соединительной ткани. Причиной размножения клеток считают обилие в очаге воспаления питатель­ных веществ и биологических стимуляторов, скапливающихся здесь в результате альтеративных и экссудативных процессов. Кроме того, благодаря воспалительной гиперемии в очаге воспа­ления усиливается обмен веществ, что также стимулирует раз­множение клеток. Размножающиеся клетки соединительной тка­ни выполняют роль фагоцитов (защитная функция), а также со­здают клеточный барьер между очагом воспаления и здоровыми тканями.

Описанные процессы воспалительной реакции протекают не последовательно друг за другом. Так, пролиферативные явления могут проявляться в самом начале с момента повреждения тканей, т.е. одновременно с альтерацией. Экссудативный процесс также может проявиться в начале альтерации или затянуться до затуха­ния пролиферативного процесса.

Только морфологические, патофизиологические и биохими­ческие исследования позволяют раскрыть сложные механизмы, играющие роль в развитии воспаления. Воспаление, хотя и мест­ный процесс, но он оказывает влияние на организм в целом. Раз­виваются изменения, носящие общий характер: меняется состав крови, кровоснабжение, обмен веществ и т. д.

У рыб воспалительный процесс изучен далеко не достаточно. Ему во многом присущи внешние признаки воспаления (покрас­нение, припухлость, расстройство функций). Причинами воспале­ния являются любые воздействия на орган или ткань рыбы, пре­вышающие их устойчивость. Возможны физические причины (ме­ханические, термические), химические (воздействие токсических веществ, нарушения газового и химического режимов в водоеме), биологические (воздействие инфекционных и инвазионных пато­генных агентов). Перечисленные причины относятся к группе внешних (экзогенных) факторов. Существует группа внутренних (эндогенных) факторов, но эти причины возникновения воспали­тельной реакции у рыб не изучены.

Воспаление проявляется в двух формах: острой и хронической. Форма течения воспалительной реакции зависит от причины, ее вызвавшей, и физиологического состояния организма.

Острое течение характеризуется преобладанием альтеративных и экссудативных явлений, протекает быстро.

Хроническое течение обычно растянуто во времени, и в нем преобладают атрофические и пролиферативные изменения.

Воспаление может заканчиваться полным восстановлением ткани (органа), или исход его может быть неполным. В этом слу­чае остается патологическое состояние ткани (органа) в виде про-лиферативных разрастаний (соединительнотканные спайки, сра­щения), или атрофии.

В зависимости от того, какой из трех патологических процессов преобладает в конкретной воспалительной реакции, различают три основные его формы: альтеративное, экссудативное и проли-феративное.

Альтеративное воспаление часто возникает при инфекционных процессах или действии на организм токсических веществ. В нем преобладают дегенеративно-некротические процессы. Хорошо вы­ражены гиперемия, слущивание эпителия со слизистых оболочек. Слабо проявляются эмиграция из сосудов лейкоцитов и пролифе­рация. Чаще всего эта форма воспаления протекает в острой форме. Однако при хроническом течении возможно замещение клеточных элементов ткани органа соединительной тканью. Особенно четко альтеративные изменения бывают выражены в паренхиматозных органах — печени, почках, селезенке.

Экссудативное воспаление характеризуется нарушением про­ницаемости стенок кровеносных сосудов и хорошо выраженным выходом из них составных элементов крови. Этот вид воспаления наблюдается в органах с хорошо развитой кровеносной системой (слизистые оболочки, жабры, плавательный пузырь). В зависимос­ти от составных частей экссудата воспаление этой формы может быть серозным, фибринозным, гнойным и геморрагическим. Се­розное воспаление отличается выделением экссудата, содержащего небольшое количество белка (3—5 %) и клеточных элементов кро­ви. При этом воспалении развивается заметный отек. Серозному воспалению в большой степени подвержены слизистые оболочки. Причинами могут стать механические повреждения, температур­ный фактор, токсины, инфекционные агенты. Фибринозное воспа­ление подразумевает содержание в экссудате большого количества белка — фибриногена, который свертывается и откладывается на серозных и слизистых оболочках, между тканевыми элементами. Пленка свернувшегося фибриногена может быть очень плотной, и в результате в пораженных слизистых оболочках развивается некроз.

Гнойное воспаление возникает в поверхностных слоях тканей и в их толще. Оно характеризуется большим скоплением в очаге воспаления лейкоцитов в состоянии распада и гнойной сыворот­ки, которая содержит много белка и неспособна к свертыванию. Все это образует гной — мутную густую жидкость желтовато-зеле­ного цвета. При гнойном воспалении возможно возникновение абсцесса — полости в ткани, заполненной гноем, или флегмоны — пропитывание тканей гноем. Причиной гнойного воспаления чаще всего является воздействие гноеродных микроорганизмов, например при фурункулезе лососевых.

Геморрагическое воспаление — это наиболее тяжелая форма экссудативного воспаления, когда в экссудате содержится боль­шое количество эритроцитов, что придает ему красноватый отте­нок. Причиной этого воспаления, как правило, являются патоген­ные микроорганизмы. При этом проницаемость кровеносных со­судов настолько повышается, что через них выходят не только Плазма и лейкоциты, но и эритроциты. У рыб геморрагическое воспаление наблюдается у лососевых при некоторых вирусных за­болеваниях, у карпа при эритродерматите.

Пролиферативное (продуктивное) воспаление наблюдается при преобладании в очаге воспаления процессов клеточного размно­жения и в результате разрастания местной ткани. Разрастающаяся ткань богата кровеносными сосудами, содержит большое количе­ство гистиоцитов, плазматических эпителиальных клеток. Часто присутствуют гигантские клетки с множеством ядер. Здесь же скапливаются различные формы лейкоцитов. Со временем разру­шенная паренхима органа замещается соединительной тканью.

Пролиферативное воспаление наблюдается при проникновении в ткани различных паразитических животных. При этом сначала развиваются альтеративные и экссудативные процессы, сменяющи­еся пролиферацией, которая носит характер отграничивающей ре­акции и завершается образованием капсулы, окружающей паразита. Подобное явление наблюдается при паразитировании плероцерко-идов цестод, метацеркариев трематод в мускулатуре или во внутрен­них органах некоторых рыб. Со временем в этих соединительно­тканных капсулах проходят дистрофические изменения: они могут обызвествляться (процесс петрификации), а находящиеся внутри них паразиты погибают и постепенно рассасываются.

ГИПЕРТРОФИЯ

 

Гипертрофией называют увеличение объема ткани или органа. Различают собственно гипертрофию, при которой увеличение объема ткани или органа происходит за счет увеличения объема его клеток и тканевых элементов, и гиперплазию, когда увеличе­ние органа или ткани происходит вследствие размножения и уве­личения количества его клеток и тканевых элементов. Гипертро­фия может быть физиологической и патологической.

При физиологической гипертрофии увеличение объема органа происходит в результате усиления его функции под влиянием есте­ственных причин (например, увеличение размера гонад у рыб перед икрометанием). Особенностью физиологической гипертрофии явля­ется ее обратимость. После прекращения действия причин, ее вызы­вающих, орган или ткань возвращается в нормальное состояние.

Патологическая гипертрофия развивается под влиянием каких-либо чрезмерных для организма факторов. В этих случаях в тканях развивается временное усиление обмена веществ (когда организм пытается справиться с непривычным раздражителем), а затем ги­пертрофический процесс переходит в атрофию или дистрофию, нарушается нейрогуморальная регуляция и процесс становится необратимым. У рыб патологическая гипертрофия наблюдается при некоторых вирусных заболеваниях (лимфоцистис, стоматопа-пиллома угрей) и при паразитировании внутриклеточных про­стейших (микроспоридии).

РЕГЕНЕРАЦИЯ

 

Регенерацией называют восстановление утраченных или по­врежденных частей тела. Это защитная (приспособительная) реак­ция выработана в процессе эволюционного развития организмов.

У позвоночных возможно восстановление только тканей. При­чем быстрее восстанавливаются ткани, которые часто поврежда­ются (эпидермис, слизистые оболочки), а более защищенные тка­ни (нервные клетки, хрящевые ткани, сердечная мышца) облада­ют наименьшей способностью к регенерации. У рыб регенерация проявляется в восстановлении разрушенных жаберных лепестков, жаберных крышек, плавников, кожных покровов и др.

Регенерация может быть физиологической и восстановительной (репаративной). Физиологическая регенерация — это естественный процесс замещения новообразованными тканевыми элементами старых, утраченных в результате физиологического некроза. Этот процесс совершается в организме постоянно (отмирание клеток эпидермиса, клеток красной и белой крови и т. д.). В организме су­ществуют специальные тканевые системы и органы (центры реге­нерации), в которых воспроизводятся новые клетки взамен подвер­гшихся естественному отмиранию. Особенности физиологической регенерации заключаются в том, что вновь образованные клеточ­ные элементы полностью замещают утраченные не только в коли­чественном, но и в качественном отношении. Как правило, они бо­лее соответствуют состоянию организма (например, возрасту) и особенностям внешних условий (например, сезону года, изменени­ям гидрологических условий в водоеме).

Восстановительная (репаративная) регенерация — это замеще­ние клеточных элементов и тканей, разрушенных в результате воз­действия вредных факторов. Она может быть полной и неполной.

При полной регенерации поврежденная ткань замещается идентичной, полностью соответствуя утраченной. Это происходит при незначительном повреждении, сохранении нервного и сосу­дистого аппаратов.

При неполной регенерации происходит замещение дефекта тканью, отличающейся от утраченной (чаще всего волокнистой соединительной тканью), или с выраженными отклонениями от нормального строения. Данный вид регенерации наблюдается при обширных повреждениях, сопровождающихся нарушением не­рвных и сосудистых элементов. Скорость восстановительного Процесса различна и зависит от свойств поврежденной ткани и степени ее разрушения. Некоторые ткани, например, нервная, хРящевая, регенерируют медленно, а эпителиальная, железистая и Другие восстанавливаются довольно быстро. На процесс регенера­ции оказывают существенное воздействие условия окружающей среды, наличие полноценного питания, физиологический статус, возраст. У молодых регенерация тканей происходит быстрее, чем у Рыб старших возрастов.

ИНКАПСУЛЯЦИЯ

 

Инкапсуляцией называется обрастание тканью патологическо­го очага и образование вокруг него капсулы. Капсула может окру­жать доброкачественную опухоль, очаг воспаления, инородное тело, попавшее в ткань, или паразита и ослаблять их воздействие на организм. Образование капсул связано в основном с пролифе-ративными процессами воспаления, реже с патологической гипер­трофией и избыточной регенерацией. Развитие процесса инкапсу­ляции является не только ответом на механическое раздражение тканей, но и специфической защитной реакцией организма на ог­раничение и возможное подавление вредоносного воздействия па­тологического очага (или патогенного агента).

Обрастание паразитов тканью хозяина, т.е. образование вокруг него капсулы, наблюдается у рыб весьма часто. Различают капсулы эпителиальные, соединительнотканные и смешанного происхож­дения.

Эпителиальные капсулы выделяются как кожными покрова­ми, так и кишечным эпителием. В качестве примера такой капсу­лы можно привести разрастание кожной ткани вокруг личинок двустворчатых моллюсков — глохидий, паразитирующих на плавниках и в жабрах различных пресноводных рыб. Глохидий с помощью своих створок зажимают участок межплавниковой тка­ни или жабр рыбы. В результате повреждения ткани начинается ее разрастание вокруг глохидий и образуется эпителиальная кап­сула.

При поражении ихтиофтириусом также наблюдается разраста­ние эпителия, лежащего над паразитом, с образованием неболь­шого бугорка. При сильном заражении этим паразитом на жабрах начинается разрастание респираторных складок, что иногда при­водит даже к срастанию образовавшихся выростов. В результате этого процесса паразит как бы оттесняется от наиболее важных участков ткани и погибает.

Разрастание эпителиальной ткани может приобретать форму выростов. Характерные выросты образуются у мальков карпа под влиянием моногенеи Dactylogyrus vastator. Паразит прикрепляется к вершине жаберного лепестка, который начинает бурно расти. В результате возникают прозрачные длинные тяжи, на которых па­разит не может удержаться и падает, после чего отпадают и вырос­ты. В результате малек от него освобождается.

Часто встречаются у рыб соединительнотканные капсулы. Они образуются под влиянием некоторых бактерий, грибов (ихтиофо-нуса), простейших (миксоспоридий и микроспоридий), плероцер-коидов цестод, матацеркариев трематод, личинок нематод и скребней, паразитирующих в полости тела, в стенках кишечника и во внутренних органах. Обычно капсулы приобретают округлую форму. Таковы белые паренхиматозные капсулы, окружающие плероцеркоидов цестод рода Triaenophorus и Diphyllobothrium, до­стигающие величины горошины, иногда и больше, видимые нево­оруженным глазом.

Капсулы, образующиеся вокруг личинок нематод, вытянуты в длину, приобретают форму чехлика. Они бывают иногда совсем прозрачными и даже окрашенными в очень яркие цвета: оранже­вый, зеленый, синий.

У рыб наблюдают также капсулообразные, эпителиально-со­единительнотканные разрастания. Например, они выявлены на жаберных лепестках белого амура и толстолобика, в местах при­крепления рачков Sinergasilus lieni, S. major.

 

КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ

1. Дать определение понятия болезнь. 2. Перечислить основные фак­торы, вызывающие заболевания у рыб. 3. Рассказать о принципах совре­менной классификации болезней рыб. 4. Перечислить основные приемы диагностики болезней рыб. 5. Рассказать о нарушениях обмена веществ. 6. Охарактеризуйте основные патологические процессы. 7. Что собой представляет иммунитет?

 

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.