Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Молекулярный механизм процессов обмена веществ и энергии



Обмен веществ (метаболизм) — это совокупность изменений и превращений вещества и энергии в организмах, обеспечивающих их рост, развитие, жизнедеятельность, самовоспроизведение и самосохранение. Процесс метаболизма — это непрерывно протекающие реакции потребления и усвоения поступающих веществ,


превращения их в собственное тело организма (ассимиляции), а также противоположные реакции — разрушения некоторых веществ (диссимиляции). Ассимиляция может быть автотрофной (фотосинтез у зеленых растений) и гетеротрофной (пищеварение у животных). При химическом разложении молекул выделяется энергия, скрытая в форме химических связей в исходном соединении, и становится доступной для живой клетки. Примеры диссимиляции — дыхание, брожение. Пищеварение включает в себя процессы расщепления. Реакции между органическими соединениями идут очень медленно. В живой клетке выработались ускорители реакций — ферменты: биологические катализаторы, присутствующие во всех клетках и имеющие белковую природу. Их активность зависит от условий окружающей среды, определенной рН, и отсутствия ингибиторов. Они не изменяются и не расходуются в ходе реакций, как и катализаторы. Огромна их производительность — одна молекула фермента может за 1 мин разложить до 5 млн молекул субстрата — вещества, на которое действует фермент.

Для каждого вида организмов генетически закреплен свой тип обмена веществ, зависящий от условий существования. Его интенсивность и направленность обеспечиваются регуляцией проницаемости биомембран и синтеза и активности ферментов гормонами, координируемыми центральной нервной системой. Ферменты применяют в сельском хозяйстве, пищевой и легкой промышленности, медицине.

Фермент воздействует только на одно изменение; обозначают его путем прибавления к названию субстрата окончания «-аза». Так, фермент, разлагающий сахарозу, — сахароза. Если отмечается активность фермента в определенной реакции (гликолиза, например), его называют сахароза -гидролаза. Ферменты, отщепляющие водород, — дегидрогеназы. Они действуют лишь на свой субстрат — есть дегидрогеназа молочной кислоты, дегидрогеназа янтарной кислоты и пр. Сверхспециализированные ферменты расщепляют только один из двух стереоизомеров, например молочной кислоты — L- и D-формы, которые отличаются направлением вращения плоскости поляризации. Но есть и не столь избирательные ферменты. Например, липазы — ферменты, образующиеся в поджелудочной железе, разлагают почти все жиры на глицерин и жирные кислоты.

Ферменты должны обеспечить узнавание своего субстрата, присоединение к нему и химическое его преобразование. Эти функции выполняют две разные части большой молекулы фермента. Кофермент — это низкомолекулярная часть (витамин или ион металла типа меди и молибдена). Например, многие дегидрогеназы использует одинаковые вещества в качестве коферментов: амид никотиновой кислоты (витамин В) и фосфорную кислоту. У ферментов, отщепляющих С02, коферментом служит тиаминпиро-


фосфат — витамин В1 а у ферментов, отщепляющих аминогруппы (NH2), — витамин В2. Именно коферменты отвечают за специфичность действия. В зависимости от собственного строения они способны химически изменять присоединенный субстрат, это их функция. Другая часть фермента — апофермент. Эта белковая часть выбирает субстрат и соединяет его с коферментом. Апофермент определяет специфичность субстрата. Только при соединении вместе эти две части приобретают ферментальную активность.

Гомеостаз (постоянство внутренней среды организма) обеспечивается метаболизмом. Обмен веществ осуществляется на клеточном, тканевом, органном и организменном уровнях. В живой клетке постоянно происходит непрерывное движение веществ через ее оболочку — мембрану. Значительное количество энергии высвобождается и при фотосинтезе.

Выяснение механизмов превращения энергии в биосистемах — одно из больших достижений науки в XX в. Стало понятно, как солнечная энергия преобразуется в специальных пигментных структурах растений в энергию химических связей, как превращаются вещества в процессах брожения и гликолиза (окисление углеводов без кислорода), как происходит внутриклеточное дыхание — перенос электронов в митохондриях от коферментов к кислороду.

В центре этих превращений в клетке находится АТФ, которая синтезируется из АДФ и Н3Р04 за счет световой энергии или энергии, выделяемой при гликолизе, брожении или дыхании. При гликолизе АТФ выделяется энергия, необходимая для совершения всей работы живого организма — от создания градиентов концентрации ионов и сокращения мышц до синтеза белка. Углеродные остовы для синтеза метаболитов поставляет процесс распада ли-пидов (рис. 11.8).

Открытие этих общих для всех организмов биохимических процессов, осуществленное усилиями исследователей во многих лабораториях мира (в Германии — О.Мейергоф, К.Ломан, Ф.Липман; в СССР — В.А.Энгельгардт, М.Н.Любимова, В.А.Белицер, Я.О.Парнас и др.), стало возможным благодаря применению в биологии идей термодинамики. В. А. Энгельгардт сформулировал принцип механохимических преобразований энергии непосредственно на макромолекулах ферментов. В 1961 г. английский биохимик П. Митчелл выдвинул гипотезу хемиоосмотического сопряжения, обратив внимание на возможность синтеза АТФ за счет энергии электрохимического потенциала (из-за неравновесной концентрации ионов по разные стороны биологических мембран) и прямого электрохимического преобразования энергии.

Обменные процессы в неживой природе характеризуются круговоротом веществ, цикличностью. В круговорот втянуты все геосферы, в них происходят процессы переноса веществ, меняющие их локальную концентрацию. С появлением жиз-


Рис. 11.8. Распад липидов, поставляющий углеродные скелеты для синтеза сахарозы и пр. (часть реакций происходит в глиоксисомах, а часть — в митохондриях и цитоплазме)

ни в обменные процессы, происходящие в неживой природе, стали втягиваться и процессы биосферы, которая представляет единство живого и минеральных элементов, вовлеченных в сферу жизни. В обменных процессах, происходящих в неживой природе, нельзя выделить взаимосвязанных процессов ассимиляции и диссимиляции. Хотя все эти процессы происходят циклически во всех геосферах, они не направлены на цели роста, самосохранения, воспроизводства, адаптации и других характеристик, свойственных живым организмам. Согласно концепции Вернадского, «миграция химических элементов на земной поверхности и в биосфере в целом осуществляется или при непосредственном участии живого вещества (биогенная миграция), или же она протекает в среде, геохимические особенности которой (кислород, углекислый газ, водород и др.) обусловлены живым веществом, как тем, которое в настоящее время населяет биосферу, так и тем, которое действовало на Землю в течение всей геологической истории».

Структурную основу метаболизма обеспечивает клеточный матрице, определяющий пространственное размещение молекулярных компонентов клетки, занятых в процессе жизнедеятельности. Среди клеточных органелл особую роль играют хлоропласты клеток зеленых растений и митохондрии любых организмов. В хлоро-пластах происходит связывание энергии солнечного света в процессе фотосинтеза. В митохондриях же извлекается энергия,


заключенная в химических связях поступающих в клетку питательных веществ.

Функция клеточных органелл — митохондрий — была долгое время неясна. Они на 85 % состоят из воды, как и целые клетки, а их сухое вещество — из белка и липидов. Митохондрии богаты элементарными мембранами, состоящими из бимолекулярной липидной пленки, покрытой с двух сторон белковой пленкой. На внутренней поверхности мембраны упорядочение расположены ферменты, обеспечивающие синтез АТФ. В митохондриях — множество ферментов клеточного дыхания и ферментов синтеза АТФ, много собственных ДНК и РНК, есть рибосомы, поэтому они могут синтезировать белки. Размножаются митохондрии делением пополам.

Энергия, необходимая для биосинтеза, выделяется в процессах диссимиляции. Важнейший субстрат этих процессов — углеводы; для дыхания требуются еще белки и жиры, а для брожения — спирты, органические кислоты и др. Процесс сжигания глюкозы до двуокиси углерода С02 происходит в несколько стадий, чтобы предотвратить его взрывной характер и успеть усвоить выделившуюся энергию. При расщеплении глюкозы энергия выделяется на каждом этапе реакции при участии ряда ферментов: С6Н1206 + 602 -» 6Н20 + 6С02 + 2875 кДж. При этом часть энергии выделяется в виде теплоты, а часть идет на образование АТФ, «энергетической валюты» клетки. И в дыхании, и брожении расщепление глюкозы начинается с анаэробного распада глюкозы с образованием пировиноградной кислоты, АТФ и кофермента НАДФ (никотинамидадениндинуклеотид). Этот процесс называют гликолизом. В процессе брожения при участии ферментов продолжается дальнейшее расщепление веществ в отсутствие кислорода. Распад одной молекулы глюкозы приводит к образованию двух молекул АТФ, в каждой из которых сохраняется в виде химической связи до 40 % энергии. Оставшаяся энергия расщепления рассеивается в виде теплоты. Для организмов типа дрожжей этого было бы достаточно — они только отщепляют углекислый газ от пировиноградной кислоты, присоединяют водород, который имели «в запасе», и получается этиловый спирт. Этот процесс называют спиртовым брожением. При этом приобретается еще молекула фосфата. Гликолиз происходит не в митохондриях, но последующие стадии дыхания клетки без них не обходятся.

Другой вид энергетического обмена — кислородный — называется аэробным (дыханием). Вещества расщепления глюкозы, полученные при гликолизе, в присутствии кислорода расщепляются до воды и углекислого газа. При этом образуется 30 молекул АТФ. Окисление двух молекул НАДФ в электротранспортной сети митохондрий сопряжено с синтезом еще шести молекул АТФ. Итак, в процессе дыхания образуется 36 молекул АТФ, а с уче-


том еще двух, образовавшихся при гликолизе, — 38 молекул АТФ. Энергия молекулы АТФ во внутриклеточных условиях — около 42 кДж/моль, а для 38 молекул — 1600 кДж/моль. Это значит, что КПД процессов равен 55 %.

Пировиноградная кислота расщепляется под действием ферментов до углекислого газа и водорода, а на последней стадии водород окисляется кислородом с образованием воды. Молекулы Н20 и С02 очень бедны энергетически, поэтому энергия, содержавшаяся ранее в пировиноградной кислоте, обнаруживается в богатом энергией химическом соединении — АТФ и частично переходит в теплоту. Образование АТФ — главный результат и «цель» клеточного дыхания (рис. 11.9). Образуется АТФ присоединением к имеющейся в клетке АДФ третьей молекулы фосфорной кислоты (процесс фосфорилирования), и митохондрии поставляют клетке АТФ, используемую в различных процессах, требующих затраты энергии. Поэтому их называют энергетическими фабриками клетки, и мышечные клетки имеют большее

Рис. 11.9. Схема, поясняющая функции процесса дыхания (высвобождение энергии, используемой в процессах метаболизма и образование строительных блоков, из которых в клетке синтезируются другие соединения)


число митохондрий, чем другие. Увеличение числа митохондрий происходит за счет их деления, которому предшествует стадия редупликации ДНК. Они содержат кольцевую молекулу ДНК и способны осуществлять полуавтономный синтез белков. Для аккумуляции химической энергии в клетке природа выбрала одно универсальное соединение — АТФ.

АТФ — это аденозинтрифосфат, нуклеотид, концентрация которого в клетке мала (0,04 %). Молекула АТФ состоит из адени-на, рибозы и трех остатков фосфорной кислоты. При гидролизе остатка фосфорной кислоты выделяется энергия: АТФ + Н20 = = АДФ + Н2Р04 + 40 кДж/моль. Поскольку связь между остатками фосфорной кислоты почти в 4 раза больше, чем при расщеплении других связей, АТФ хранит энергию живого организма. Клетки используют энергию АТФ при производстве теплоты, биосинтезе, движении, в процессе фотосинтеза, проведении нервных импульсов и пр.

Лизосомы выполняют в клетке роль желудка, ферменты — желудочного сока. В них содержится до 30 ферментов, способных расщеплять белки, липиды, нуклеиновые кислоты и др. Лизосомы — пузырьки диаметром около 0,4 мкм, окруженные мембраной. Разрыв их мембраны растворит клетку, так как ферменты очень активны и способны «съесть» ее всю. При голодании они растворяют некоторые органоиды, не убивая саму клетку.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.