Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

НАУЧНЫЙ МЕТОД СТРУКТУРА НАУЧНОГО ПОЗНАНИЯ



XX век — век науки. Ее авторитет в обществе прочен и устойчив. Общее доверие к науке настолько велико, что мы порой просто отождествляем понятия «знание» и «научное знание», считая их почти синонимами. Но это далеко не так. Существует немало видов знания, источником которых является отнюдь не наука, а наш, к примеру, житейский опыт, эстетические впечатления, религиозное откровение и т.д. Однако знание, добываемое наукой, явно выбивается из этого общего ряда, намного превосходя остальные виды своей полнотой, убедительностью и чисто практическими силой и пользой. За счет чего же ему это удается? В основном за счет метода, которым оно добывается, а также при помощи особого способа его организации и построения.

Сущность научного метода можно представить очень просто: это такая процедура получения научного знания, с помощью которой его можно воспроизвести, проверить и передать другим. По большому счету человека всегда интересует два вопроса: ЧТО такое реальность и К А К с ней обращаться. Метод дает ответы на вопросы второго типа, и во многих случаях именно они имеют решающее значение.

В одной старой китайской притче некий щедрый рыболов делится своим уловом с голодным крестьянином. Но когда тот приходит за рыбой и во второй, и в третий раз, становится ясно, что много проще решить проблему, научив крестьянина самого ловить рыбу. Научить, как ловить рыбу, — значит дать метод, т.е. систему правил, приемов практической деятельности. То же относится и к деятельности познавательной. Знать, как добывается знание, — значит дать всем желающим возможность, во-первых, воспроизводить и проверять достоверность уже имеющегося знания, а во-вторых — получать новое, ранее неизвестное.

Наука тем отличается от других форм общественного сознания, что в ней методы получения нового знания стали предметом самостоятельного анализа и открытого обсуждения. В итоге родилась самостоятельная научная дисциплина — «Методология научного познания», о некоторых современных проблемах которой будет рассказано в следующих параграфах.

2.1. Методы научного познания

Греческое слово «методос» означает путь к чему-либо. В научном познании этот путь, очевидно, должен приводить к истине. Если такой путь найден, т.е. известны средства, приемы и спосо-


бы достижения цели, то его можно показать всем, сделать всеобщим достоянием и, следовательно, обеспечить безусловную воспроизводимость научного знания. И когда по этому пути пойдут многие, он неизбежно превратится в хорошо накатанную, привычную дорогу, т.е. станет всеобщим, устоявшимся способом получения нового знания. Четко фиксируя такие «пути», наука и обеспечивает свойства объективности и общеобязательности добываемого знания.

Метод есть совокупность правил, приемов познавательной и практической деятельности, обусловленных природой и закономерностями исследуемого объекта.

Таких правил и приемов существует великое множество. Часть из них опирается на обычную практику обращения человека с предметами материального мира, другие предполагают более глубокое обоснование — теоретическое, научное. Научные методы — это по сути оборотная сторона теорий. Всякая теория объясняет, что собой представляет тот или иной фрагмент реальности. Но объясняя, она тем самым показывает, как с этой реальностью следует обращаться, что с ней можно и нужно делать. Теория как бы «сворачивается» в метод. В свою очередь метод, направляя и регулируя дальнейшую познавательную деятельность, способствует дальнейшему развертыванию и углублению знания. Человеческое знание, по существу, и приобрело научную форму именно тогда, когда «догадалось» отследить и сделать ясными методы своего появления на свет.

Современная система методов познания отличается высокой сложностью и дифференцированностью. Существует множество возможных способов классификации методов: по широте «охвата» реальности, по степени общности, по применимости на разных уровнях познания и т.д.

Самое «грубое» и простое разделение научных методов подразумевает распределение их по двум группам — общенаучные и специально-научные методы познания.

Первая группа методов характеризует приемы и способы исследования во всех науках и на всех уровнях научного познания. К ним относятся методы наблюдения, эксперимента, анализа, синтеза, индукции, дедукции и т.д. Эти методы настолько универсальны, что работают даже на уровне обьщенного сознания. Охарактеризуем вкратце наиболее важные из них.

Исходным методом научного познания считается наблюдение, т.е. преднамеренное и целенаправленное изучение объектов, опирающееся на чувственные способности человека — ощущения и


восприятия. В ходе наблюдения возможно получение информации лишь о внешних, поверхностных сторонах, качествах и признаках изучаемых объектов. Научное наблюдение характеризуется рядом особенностей:

• целенаправленностью и избирательностью — внимание наблюдателя фиксируется только на тех свойствах объекта, которые связаны с предварительно поставленной задачей;

• объективностью, т.е. возможностью контроля результатов наблюдения либо за счет повторного наблюдения, либо путем использования других методов исследования;

• полнотой, точностью, однозначностью и т.д.

Итогом научных наблюдений всегда является описание исследуемого объекта, фиксируемое в виде текстов, рисунков, схем, графиков, диаграмм и т.д. С развитием науки наблюдение становится все более сложным и опосредованным путем использования различных технических устройств, приборов, измерительных инструментов. Техническая оснащенность процедуры наблюдения, с одной стороны, колоссально увеличила ее возможности, а с другой — породила серьезную проблему достоверности знаний, получаемых с помощью приборов. Современные приборы слишком далеко ушли от непосредственных ощущений человека, и поэтому безвозвратно пропала наглядность и образная простота получаемой картины.

Ведь одно дело — наблюдать в телескоп планеты или звезды, которым от нашего наблюдения, как говорится, ни жарко, ни холодно, и совсем другое — «наблюдать». какой-либо квантовый объект (электрон или протон). Всякое взаимодействие нашего макроприбора с таким микрообъектом нарушает состояние последнего. В результате мы получаем сведения о квантовом явлении, искаженные вмешательством прибора. В классической физике подобные искажения можно учесть и по результатам измерений установить «истинное» состояние объекта, не зависимое от наблюдателя. В квантовой физике это невозможно. Как любили повторять создатели квантовой механики, «для того чтобы узнать свойства пудинга, его надо съесть».

Но «съев» квантовый объект, мы его разрушим и, следовательно, не сможем еще раз проверить и уточнить состояние квантовой системы. Поэтому в квантовой физике «наблюдаемое» и «наблюдатель» неотделимы друг от друга. Разумеется, квантовые объекты существуют «сами по себе» и без всяких наблюдателей. Однако описание их свойств невозможно без точного указания на тот класс при-


боров, в котором эти свойства регистрируются. И в разных классах приборов эти свойства будут различны (в одних — волновые, в других — корпускулярные). Другими словами, квантовая система становится объектом наблюдения только в том случае, если указан точный способ измерения ее свойств.

Измерение познавательная процедура, в которой устанавливается отношение одной (измеряемой) величины, характеризующей изучаемый объект, к другой, принятой за постоянную (т.е. единицу измерения). Измерение органически связано с наблюдением и образует вместе с ним фундаментальную основу естествознания. Именно переход к фиксации количественных (однозначно измеряемых) параметров материальных тел позволил естественным наукам добиться нынешних строгости и точности знания. Измерительные процедуры могут даже опережать теоретическое объяснение: измерять температуру тел научились гораздо раньше, чем поняли физическую природу теплоты.

Еще одним важнейшим методом естественно-научного познания является эксперимент. С введением в практику науки экспериментального метода ученые из наблюдателей превратились в «естествоиспытателей». То есть данный метод предполагает активное воздействие экспериментатора на изучаемый объект и условия его существования.

Эксперимент (от лат. experimentum — проба, опыт) — способ активного, целенаправленного исследования объектов в контролируемых и управляемых условиях. Эксперимент включает процедуры наблюдения и измерения, однако не сводится к ним. Ведь экспериментатор имеет возможность подбирать необходимые условия наблюдения, комбинировать и варьировать их, добиваясь «чистоты» проявления изучаемых свойств, а также вмешиваться в «естественное» течение исследуемых процессов и даже искусственно их воспроизводить.

Главной задачей эксперимента, как правило, является проверка различных гипотез и предсказаний теории. Однако в ходе такой проверки нередко обнаруживаются и неожиданные, не предусмотренные гипотезой новые свойства объекта. Классическим примером такого рода являются эксперименты Э. Резер-форда, в 1909 г. бомбардировавшего альфа-частицами (ядрами атомов гелия) металлическую фольгу. Его прибор был несложен: поток альфа-частиц, испускаемый ампулой с радием, проходил через диафрагму, которая выделяла из общей массы узкий пучок частиц и направляла его на экран из сернистого цинка, где на-


блюдались сцинтилляции (крошечные вспышки при столкновении частиц с экраном). Поставив на пути альфа-частиц фольгу, Э. Резерфорд обнаружил, что вместо резкого изображения узкой щели диафрагмы на экране появляется размытая полоса, т.е. небольшое количество частиц (примерно 2%) отклонялось от прямого пути. По тогдашним представлениям о строении атома (модель Дж. Томсона) это было необъяснимо: в предполагаемой положительно заряженной внутриатомной среде с вкрапленными в нее электронами тяжелым альфа-частицам просто не было преград, ведь по сравнению с ними электроны — не более чем горошины перед пушечными ядрами. А последовавшее далее предположение Э. Резерфорда о том, не могут ли альфа-частицы отскакивать от фольги назад, казалось и вовсе бессмысленным. Однако помощники великого английского физика, просчитав за два года более миллиона сцинтилляций, доказали, что назад отскакивает, как мяч от сетки, примерно одна альфа-частица из восьми тысяч. Предложенное Э. Резерфордом объяснение этого неожиданного феномена известно сегодня как «планетарная модель атома»: отраженные назад альфа-частицы сталкивались с ядрами атомов фольги. А небольшое количество отражений определяется тем, что, хотя практически вся масса атома сосредоточена в ядре, оно занимает лишь ничтожную часть его объема (как Солнце в нашей планетной системе). Эти представления ныне настолько привычны, что кажется, будто они совершенно тривиальны. Но чтобы сформулировать их в первый раз, понадобились недюжинные научные терпение и смелость. А опирались последние как раз на неопровержимые результаты эксперимента.

Подобные эксперименты называют исследовательскими. Другой тип эксперимента — проверочный — предназначен для подтверждения тех или иных теоретических предположений. Так, существование множества элементарных частиц первоначально было «вычислено» теоретически, и лишь позднее подтверждено рядом целенаправленных экспериментов.

Экспериментальный метод, возникнув в XVII в. в физике (Г. Галилей, У. Гильберт), затем распространился на все области естествознания. За четыре прошедших столетия, разумеется, существенно изменилась техническая оснащенность экспериментальной практики. Многие нынешние экспериментальные установки (ускорители заряженных частиц, например) представляют собой огромные и дорогостоящие сооружения. Однако не понизилось значение и мысленных экспериментов, для которых не тре-


буется создания сложных технических средств. В XVIIв., например, Г.Галилей с помощью мысленного эксперимента сформулировал важнейший для физики принцип инерции. А в XXв. другой гений физики — А. Эйнштейн — блестяще использовал тот же прием, вообразив свободно падающий в поле тяготения лифт и обнаружив при этом, что, находясь внутри такого лифта, никаким способом нельзя определить, движется ли ускоренно лифт в поле тяготения или он покоится, а поле тяготения при этом исчезает. Результатом этого мысленного эксперимента стал принцип эквивалентности инерционной и гравитационной масс, положенный в основу общей теории относительности.

В целом же все разнообразные виды научных экспериментов составляют мощную эмпирическую базу естествознания. Эксперимент является как ведущим методом, так и одним из решающих критериев истинности научного знания.

Анализ как общенаучный метод познания представляет собой процедуру мысленного (или реального) расчленения, разложения объекта на составные элементы в целях выявления их системных свойств и отношений.

Синтез — операция соединения выделенных в анализе элементов изучаемого объекта в единое целое.

Индукция — способ рассуждения или метод получения знания, при котором общий вывод делается на основе обобщения частных посылок. Индукция может быть полной и неполной. Полная индукция возможна тогда, когда посылки охватывают все явления того или иного класса. Однако такие случаи встречаются редко. Невозможность учесть все явления данного класса заставляет использовать неполную индукцию, конечные выводы которой не имеют строго однозначного характера.

Дедукция способ рассуждения или метод движения знания от общего к частному, т.е. процесс логического перехода от общих посылок к заключениям о частных случаях. (Помните Шерлока Холмса?) Дедуктивный метод может давать строгое, достоверное знание при условии истинности общих посылок и соблюдении правил логического вывода.

Аналогия прием познания, при котором наличие сходства, совпадение признаков нетождественных объектов позволяет предположить их сходство и в других признаках. Так, обнаруженные при изучении света явления интерференции и дифракции позволили сделать вывод о его волновой природе, поскольку раньше те же свойства были зафиксированы у звука, волновой характер ко-


торого был уже точно установлен. Аналогия — незаменимое средство наглядности, изобразительности мышления. Но еще Аристотель предупреждал, что «аналогия не есть доказательство»! Она может давать лишь предположительное знание.

Абстрагирование — прием мышления, заключающийся в отвлечении от несущественных, незначимых для субъекта познания свойств и отношений исследуемого объекта с одновременным выделением тех его свойств, которые представляются важными и существенными в контексте исследования. Абстрагирование является очень острым и эффективным инструментом теоретического разума, позволяющим хирургически точно «вырезать» из хаотичного переплетения реальных связей и отношений именно те, которые представляют сущность изучаемого объекта. В рамках обыденного познания «абстрактное мышление» означает, как правило, мышление бедное, бессодержательное, одностороннее. Происходит это потому, что на данном уровне фактически нет средств различения абстракций существенных и несущественных, случайных и необходимых. (Когда мы сердимся на кого-то и даже позволяем себе награждать другого человека разными обидными характеристиками; или когда мы голосуем за того или иного политика просто потому, что он «симпатичный», мы демонстрируем примеры самого настоящего абстрактного, т.е. отвлеченного, мышления. Только «отвлекаются» при этом и становятся причиной нашего поведения свойства людей не самые важные, не выражающие их суть, а случайные, поверхностные, хотя и наиболее заметные.) На теоретическом же уровне абстрагирование — лишь начальный шаг, после которого начинается длительный и сложный процесс восхождения от абстрактного (одностороннего, но существенного) к конкретному (полному, многостороннему) знанию о предмете.

Моделирование — метод замещения изучаемого объекта подобным ему по ряду интересующих исследователя свойств и характеристик. Данные, полученные при изучении модели, затем с некоторыми поправками переносятся на реальный объект. Моделирование применяется в основном тогда, когда прямое изучение объекта либо невозможно (очевидно, что феномен «ядерной зимы» в результате массированного применения ядерного оружия кроме как на модели лучше не испытывать), либо связано с непомерными усилиями и затратами. Последствия крупных вмешательств в природные процессы (поворот рек, например) целесообразно сначала изучить на гидродинамических моделях, а потом уже экспериментировать с реальными природными объектами.


Изучать аэродинамические свойства новых конструкций самолетов или проверять их на прочность в аэродинамической трубе намного дешевле с помощью уменьшенных копий — моделей и т.д. Моделирование — метод фактически универсальный. Он может использоваться в системах самых различных уровней. Обычно выделяют такие типы моделирования, как предметное, математическое, логическое, физическое, химическое и проч. Широчайшее распространение в современных условиях получило компьютерное моделирование.

Подчеркнем еще раз, что все вышеперечисленные методы относятся к разряду общенаучных, т.е. применяемых во всех областях научного знания. Кроме них существуют и специально-научные методы, представляющие собой системы сформулированных в императивной форме принципов конкретных научных теорий.




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.