Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Мощность трехфазной цепи



Метод непосредственной оценки

Метод непосредственной оценки предполагает измерение сопротивления постоянному току с помощью омметра. Омметром называют измерительный прибор непосредственного отсчёта для определения электрических активных (активные сопротивлений также называют омическими сопротивлениями) сопротивлений. Обычно измерение производится по постоянному току, однако, в некоторых электронных омметрах возможно использование переменного тока. Разновидности омметров: мегаомметры, тераомметры, гигаомметры, миллиомметры, микроомметры, различающиеся диапазонами измеряемых сопротивлений.

По принципу действия омметры можно разделить на магнитоэлектрические - с магнитоэлектрическим измерителем или магнитоэлектрическим логометром (мегаомметры) и электронные, которые бывают аналоговые или цифровые.

«Действие магнитоэлектрического омметра основано на измерении силы тока, протекающего через измеряемое сопротивление при постоянном напряжении источника питания. Для измерения сопротивлений от сотен Ом до нескольких мегаом измеритель и измеряемое сопротивление rx включают последовательно. В этом случае сила тока I в измерителе и отклонение подвижной части прибора a пропорциональны: I = U/(r0 + rx), где U — напряжение источника питания; r0 — сопротивление измерителя. При малых значениях rx (до нескольких ом) измеритель и rx включают параллельно».[5]

За основу логометрических мегаомметров берется логометр, к плечам которого подключаются в разных комбинациях (в зависимости от предела измерения) образцовые внутренние резисторы и измеряемое сопротивление, показание логометра зависит от соотношения этих сопротивлений. В качестве источника высокого напряжения, необходимого для проведения таких измерений, в подобных приборах обычно используют механический индуктор — электрогенератор с ручным приводом, в некоторых мегаомметрах вместо индуктора применяется полупроводниковый преобразователь напряжения.

Принцип действия электронных омметров основан на преобразовании измеряемого сопротивления в пропорциональное ему напряжение с помощью операционного усилителя. Измеряемый резистор включается в цепь обратной связи (линейная шкала) или на вход усилителя. Цифровой омметр представляет собой измерительный мост с автоматическим уравновешиванием. Уравновешивание производится цифровым управляющим устройством методом подбора прецизионных резисторов в плечах моста, после чего измерительная информация с управляющего устройства подаётся на блок индикации.

«При измерении малых сопротивлений может возникать дополнительная погрешность из-за влияния переходного сопротивления в точках подключения. Чтобы избежать этого применяют так называемый метод четырехпроводного подключения. Сущность метода состоит в том, что используются две пары проводов — по одной паре на измеряемый объект подается ток определенной силы, с помощью другой пары с объекта на прибор подаётся падение напряжения пропорциональное силе тока и сопротивлению объекта. Провода подсоединяются к выводам измеряемого двухполюсника таким образом, чтобы каждый из токовых проводов не касался непосредственно соответствующего ему провода напряжения, при этом получается, что переходные сопротивления в местах контактов не включаются в измерительную цепь»

Дата введения 1971-01-01

Настоящий стандарт устанавливает условные графические обозначения электроизмерительных приборов на схемах, выполняемых вручную или автоматизированным способом, изделий всех отраслей промышленности и строительства.

(Введен дополнительно, Изм. № 1, 3).

Обозначения электроизмерительных приборов приведены в таблице.

Наименование Обозначение
1а. Датчик измеряемой неэлектрической величины
1. Прибор электроизмерительный  
а) показывающий
б) регистрирующий
в) интегрирующий (например, счетчик электрической энергии)
Примечания: 1. При необходимости изображения нестандартизованных электроизмерительных приборов следует попользовать сочетания соответствующих основных обозначении, например, комбинированный прибор, показывающий и регистрирующий. 2. Для указания назначения электроизмерительного прибора в его обозначение вписывают условные графические обозначения, установленные в стандартах ЕСКД. а также буквенные обозначения единиц измерения или измеряемых величин, которые помещают внутри графического обозначения электроизмерительного прибора
a) амперметр
б) вольтметр
в) вольтметр двойной
г) вольтметр дифференциальный
д) вольтамперметр
е) ваттметр W
ж) ваттметр суммирующий ∑W
з) варметр (измеритель активной мощности) var
и) микроамперметр μA
к) миллиамперметр тА
л) милливольтметр mV
м) омметр Ω
н) мегаомметр
о) частотомер Hz
п) волномер λ
р) фазометр: измеряющий сдвиг фаз φ
измеряющий коэффициент мощности cosφ
с) счетчик ампер-часов Ah
т) счетчик ватт-часов Wh
у) счетчик вольт-ампер-часов реактивный varh
ф) термометр, пирометр t° (допускаетсяΘо)
х) индикатор полярности + -
и) тахометр n
ч) измеритель давления Paили Р
т) измеритель уровня жидкости
ш) измеритель уровня сигнала dB
3. В обозначения электроизмерительных приборов допускается вписывать необходимые данные согласно действующим стандартам на электроизмерительные приборы. 4. Если необходимо указать характеристику отсчетного устройства прибора, то в его обозначение вписывают следующие квалифицирующие символы: а) прибор, подвижная часть которого может отклоняться в одну сторону от нулевой отметки:  
вправо
влево
б) прибор, подвижная часть которого может отклоняться в обе стороны от нулевой отметки
допускается применять обозначение
в) прибор вибрационной системы
г) прибор с цифровым отсчетом
д) прибор с непрерывной регистрацией (записывающий)
е) прибор с точечной регистрацией (записывающий)
ж) прибор печатающий с цифровой регистрацией
з) прибор с регистрацией перфорированием
Например:  
вольтметр с цифровым отсчетом
вольтметр с непрерывной регистрацией
амперметр, подвижная часть которого отклоняется в обе стороны от нулевой отметки
2. Гальванометр
3. Синхроноскоп
4. Осциллоскоп
5. Осциллограф
6. Гальванометр осциллографический: а) тока или напряжения
б) мгновенной мощности
7. Счетчик импульсов
8. Электрометр
9. Болометр полупроводниковый
10. Датчик температуры
10а. Датчик давления
Примечание: При необходимости указания конкретной величины, в которую преобразуется неэлектрическая величина, допускается применять следующие обозначения, например, датчик давления
11. Термоэлектрический преобразователь: а) с бесконтактным нагревом б) с контактным нагревом По ГОСТ 2.768-90 По ГОСТ 2.768-90
П. 12 по ГОСТ 2.728-74
13. Часы вторичные
Примечание. Для указания часов, минут и секунд используют следующее обозначение
14. Часы первичные
15. Часы с контактным устройством
16. Часы синхронные, например, на 50 Гц
17. Индикатор максимальной активной мощности, имеющий обратную связь с ваттметром
18. Дифференциальный вольтметр
19. Соленомер
20. Самопишущий комбинированный ваттметр и варметр
21. Счетчик времени
22. Счетчик ватт-часов, измеряющий энергию, передаваемую в одном направлении
23. Счетчик ватт-часов с регистрацией максимальной активной мощности
24. Отличительный символ функции счета числа событий
25. Счетчик электрических импульсов с ручной установкой на n(установка на нуль при n =0)
26. Счетчик электрических импульсов с установкой на нуль электрическим путем
27. Счетчик электрических импульсов с несколькими контактами; контакты замыкаются соответственно на каждой единице (10°), десятке (101), сотне (102), тысяче (103) событий, зарегистрированных счетным устройством
28. Счетное устройство, управляемое кулачком и управляющее замыканием контакта через каждые п событий
Примечания к п.1-28 1. При изображении обмоток измерительных приборов разнесенным способом используют следующие обозначения:  
а) обмотка токовая
б) обмотка напряжения
в) обмотка секционирования с отводами:  
токовая
напряжения
г) обмотка секционирования переключаемая: токовая
напряжения
2. Обмотка в схемах измерительных приборов, отражающих их взаимное расположение в измерительном механизме, изображают следующим образом:  
а) обмотка токовая
б) обмотка напряжения
в) обмотки токовые для сложения или вычитания
г) обмотки напряжения для сложения или вычитания
Например, механизм измерительный:  
амперметра однообмоточного
вольтметра однообмоточного
ваттметра однофазного
ваттметра трехфазного одноэлементного с двумя токовыми обмотками
ваттметра трехфазного двухэлементного
ваттметра трехфазного трехэлементного
логометра магнитоэлектрического (например, омметра-логометра)
логометра ферродинамического (например, частотомера)
логометра электродинамического (например, фазометра однофазного)
логометра трехобмоточного (например, фазометра трехфазного с двумя токовыми обмотками)
логометра четырехобмоточного (например, синхроноскопа трехфазного)
логометра четырехобмоточного (например, фазометра трехфазного с одной токовой обмоткой)
3. Выводные контакты обмоток допускается не изображать, если это не приведет к недоразумению  
4. Выводные контакты обмоток допускается не зачернять, например, вольтметр однообмоточный

СОЕДИНЕНИЯ ЗВЕЗДОЙ И ТРЕУГОЛЬНИКОМ

способы соединений элементов электрич. цепей, при к-рых ветви цепи образуют соответственно трёхлучевую звезду и треугольник. Наибольшее распространение С. з. и т. получили в трёхфазных электрич. цепях. При соединении звездой концы обмоток трёх фаз генератора (трансформатора, электродвигателя) объединяются в общую нейтральную точку, а начала обмоток присоединяются к трём отходящим проводам ("линейные провода"). При соединении треугольником конец каждой фазы соединяется с началом следующей и к полученным трём узлам присоединяются линейные провода. Если и генератор и приёмник электроэнергии соединены звездой, то нейтр. точки могут быть связаны четвёртым (нейтр.) проводом. У симметричных приёмников, соединённых звездой или треугольником, сопротивления всех трёх фаз одинаковы. В симметричной трёхфазной цепи, соединённой треугольником, напряжения Uл между линейными проводами равны напряжениям Uф на фазах приёмника, а силы тока в линейных проводах в корень из 3 раз больше, чем в фазах приёмника. При соединении звездой линейные напряжения больше фазных в корень из 3 раз, а силы тока в линейных проводах и в фазах одинаковы. См. рис.

Схемы соединений звездой и треугольником трёхфазной (симметричной) цепи: а - звездой; б - треугольником; Uл - линейное напряжение; Uф - фазное напряжение; Iл - сила линейного тока; Iф - сила фазного тока

Трехфазная система ЭДС  

Трехфазные электрические цепи представляют собой частный случай многофазных цепей. Многофазная система электрических цепей есть совокупность нескольких однофазных электрических цепей, в каждой из которых действуют синусоидальные ЭДС одной и той же частоты, создаваемые общим источником энергии и сдвинутые друг относительно друга по фазе на один и тот же угол. Термин «фаза» применяется для обозначения угла, характеризующего стадию периодического процесса, а также для названия однофазной цепи, входящей в многофазную цепь.

Обычно применяют симметричные многофазные системы, у которых амплитудные значения ЭДС одинаковы, а фазы сдвинуты друг относительно друга на один и тот же угол /m, где m — число фаз. Наиболее часто в электротехнике используют двухфазные, трехфазные, шестифазные цепи. В электроэнергетике наибольшее практическое значение имеют трехфазные системы.

Трехфазные цепи — это совокупность трех однофазных цепей, в которых действуют синусоидальные ЭДС одной и той же частоты, сдвинутые по фазе друг относительно друга на угол /3. Источником электрической энергии в трехфазной цепи является синхронный генератор, в трех обмотках которого, конструктивно сдвинутых друг относительно друга на угол /3 и называемых фазами, индуцируются три ЭДС в свою очередь, также сдвинуты относительно друг друга на угол /3. Устройство трехфазного синхронного генератора схематически показано на рис. 1. В пазах сердечника статора расположены три одинаковые обмотки. На переднем торце статора витки обмоток оканчиваются зажимами А, В, С (начало обмоток) и соответственно зажимами X, Y, Z (концы обмоток). Начала обмоток смещены относительно друг друга на угол /3, и соответственно их концы также cдвинуты относительно друг друга на угол /3. ЭДС в обмотках статора индуцируются в результате пересечения их витков магнитным полем, которое возбуждается постоянным током, проходящим по обмотке вращающегося ротора, которая называется обмоткой возбуждения. При равномерной частоте вращения ротора в обмотках статора индуцируются синусоидальные ЭДС одинаковой частоты, сдвинутые по фазе относительно друг друга на угол /3.


Трехфазная система ЭДС, индуцируемых в статоре синхронного генератора, обычно представляет собой симметричную систему.
На электрических схемах обмотки статора трехфазного генератора условно изображают так, как показано на рис. 2 (а). За условное положительное направление ЭДС в каждой фазе генератора принимают направление от конца к началу обмотки.

На рис. 2 (б) показано изменение мгновенных значений ЭДС трехфазного генератора, а на рис. 3 (а, б) даны его векторные диаграммы для прямой и обратной последовательности чередования фаз. Последовательность, с которой ЭДС в фазных обмотках генератора принимает одинаковые значения, называют порядком чередования фаз или последовательностью фаз. Если ротор генератора вращать в направлении, указанном на рис. 1, то получается последовательность чередования фаз ABC, т. е. ЭДС фазы В отстает по фазе от ЭДС фазы А, и ЭДС фазы С отстает по фазе от ЭДС фазы В. Такую систему ЭДС называют системой прямой последовательности. Если изменить направление вращения ротора генератора на противоположное, то последовательность чередования фаз будет обратной. У генераторов роторы всегда вращаются в одном направлении, вследствие чего последовательность чередования фаз никогда не изменяется. На практике у генераторов обычно применяется прямая последовательность чередования фаз. От последовательности чередования фаз зависит направление вращения трехфазных синхронных и асинхронных двигателей. Достаточно поменять местами две любые фазы двигателя, как возникает обратная последовательность чередования фаз и, следовательно, противоположное направление вращения двигателя.
Последовательность фаз необходимо также учитывать при параллельном включении трехфазных генераторов.

Прибор SONEL типа TKF-11 показывает наличие напряжения всех фаз, контролирует симметрию всех напряжений и отсутствие симметрии, а также определяет правильность чередования фаз.

Мощность трехфазной цепи

Каждую фазу нагрузки в трехфазной цепи можно рассматривать как цепь однофазного переменного тока. Соотношения для мгновенной, активной, реактивной, полной и комплексной мощностей ранее были получены.

Мгновенные мощности фаз можно определить согласно выражению:

.

Суммарная мгновенная мощность будет равна

Тогда получим

 

где - активная мощность одной фазы, а - суммарная активная мощность нагрузки. Получаем вывод: суммарная мгновенная мощность симметричной трехфазной цепи не изменяется во времени и равна суммарной активной мощности всей цепи.

Реактивная и полная мощности определяются так:

Через линейные токи и напряжения мощности могут быть определены:

;

При несимметричной нагрузке суммарные мощности определяются как алгебраические суммы мощностей отдельных фаз. Активная мощность трехфазного приемника равна сумме активных мощностей фаз и аналогично для реактивной. Полная мощность трехфазной цепи будет равна:

;

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.