Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Разрядник длинно-искровой



Принцип работы разрядника основан на использовании эффекта скользящего разряда, который обеспечивает большую длину импульсного перекрытия по поверхности разрядника, и предотвращении за счет этого перехода импульсного перекрытия в силовую дугу тока промышленной частоты. Разрядный элемент РДИ, вдоль которого развивается скользящий разряд, имеет длину, в несколько раз превышающую длину защищаемого изолятора линии. Конструкция разрядника обеспечивает его более низкую импульсную электрическую прочность по сравнению с защищаемой изоляцией. Главной особенностью длинно-искрового разрядника является то, что вследствие большой длины импульсного грозового перекрытии вероятность установления дуги короткого замыкания сводится к нулю.

Существуют различные модификации РДИ, отличающиеся назначением и особенностями ВЛ, на которых они применяются. РДИ предназначены для защиты воздушных линий электропередачи напряжением 6-10 кВ трехфазного переменного тока с защищёнными и неизолированными проводами от индуктированных грозовых перенапряжений и их последствий и прямого удара молнии; рассчитаны для работы на открытом воздухе при температуре окружающего воздуха от минус 60 °C до плюс 50 °C в течение 30-и лет. Основное преимущество РДИ: разряд развивается вдоль аппарата по воздуху, а не внутри его. Это позволяет значительно увеличить срок эксплуатации изделий и повышает их надежность.

СЕТЕВОЙ ФИЛЬТР

Сетевой фильтр — варисторный фильтр для подавления импульсных помех и LC-фильтр (индуктивно-емкостной) для подавления высокочастотных помех. Так же часто называют содержащий такой компонент электрический удлинитель.

LC-фильтр предназначен для подавления высокочастотных помех (частотой 100 Гц — 100 МГц), которые искажают синусоиду переменного напряжения в сети и отрицательно сказываются на работе электрооборудования. Эффективность работы LC-фильтра в различных диапазонах частот измеряется в дБ. Источниками ВЧ-помех являются различные электрические устройства: электродвигатели, генераторы, сварочные аппараты и т. п.

СТАБИЛИТРОН

Полупроводниковый стабилитрон, или диод Зенера — полупроводниковый диод, работающий при обратном смещении в режиме пробоя. До наступления пробоя через стабилитрон протекают незначительные токи утечки, а его сопротивление весьма высоко. При наступлении пробоя ток через стабилитрон резко возрастает, а его дифференциальное сопротивление падает до величины, составляющей для различных приборов от долей Ома до сотен Ом. Поэтому в режиме пробоя напряжение на стабилитроне поддерживается с заданной точностью в широком диапазоне обратных токов. Основное назначение стабилитронов — стабилизация напряжения. Серийные стабилитроны изготавливаются на напряжения от 1,8 В до 400 В. Интегральные стабилитроны со скрытой структурой на напряжение около 7 В являются самыми точными и стабильными твердотельными источниками опорного напряжения: лучшие их образцы приближаются по совокупности показателей к нормальному элементу Вестона. Особый тип стабилитронов, высоковольтные лавинные диоды («подавители переходных импульсных помех», «суппрессоры», «TVS-диоды») применяется для защиты электроаппаратуры от перенапряжений.

Полупроводниковый стабилитрон — это диод, предназначенный для работы в режиме пробоя на обратной ветви вольт-амперной характеристики. В диоде, к которому приложено обратное, или запирающее, напряжение, возможны три механизма пробоя: туннельный пробой, лавинный пробой и пробой вследствие тепловой неустойчивости — разрушительного саморазогрева токами утечки. Тепловой пробой наблюдается в выпрямительных диодах, особенно германиевых, а для кремниевых стабилитронов он не критичен. Стабилитроны проектируются и изготавливаются таким образом, что либо туннельный, либо лавинный пробой, либо оба эти явления вместе возникают задолго до того, как в кристалле диода возникнут предпосылки к тепловому пробою. Серийные стабилитроны изготавливаются из кремния, известны также перспективные разработки стабилитронов из карбида кремния и арсенида галлия].

Первую модель электрического пробоя предложил в 1933 году Кларенс Зенер, в то время работавший в Бристольском университете. Его «Теория электического пробоя в твёрдых диэлектриках» была опубликована летом 1934 года. В 1954 году Кеннет Маккей из Bell Labs установил, что предложеный Зенером туннельный механизм действует только при напряжениях пробоя до примерно 5,5 В, а при бо́льших напряжениях преобладает лавинный механизм. Напряжение пробоя стабилитрона определяется концентрациями акцепторов и доноров и профилем легирования области p-n-перехода. Чем выше концентрации примесей и чем больше их градиент в переходе, тем больше напряжённость электрического поля в области пространственного заряда при равном обратном напряжении, и тем меньше обратное напряжение, при котором возникает пробой:

-Туннельный, или зенеровский, пробой возникает в полупроводнике только тогда, когда напряжённость электрического поля в p-n-переходе достигает уровня в 106 В/см. Такие уровни напряжённости возможны только в высоколегированных диодах (структурах p+-n+-типа проводимости) с напряжением пробоя не более шестикратной ширины запрещённой зоны (6 EG ≈ 6,7 В), при этом в диапазоне от 4 EG до 6 EG (4,5…6,7 В) туннельный пробой сосуществует с лавинным, а при напряжении пробоя менее 4 EG (≈4,5 В) полностью вытесняет его. С ростом температуры перехода ширина запрещённой зоны, а вместе с ней и напряжение пробоя, уменьшается: низковольтные стабилитроны с преобладанием туннельного пробоя имеют отрицательный температурный коэффициент напряжения (ТКН).

-В диодах с меньшими уровнями легирования, или меньшими градиентами легирующих примесей, и, как следствие, большими напряжениями пробоя наблюдается лавинный механизм пробоя. Он возникает при концентрациях примесей, примерно соответствующих напряжению пробоя в 4 EG (≈4,5 В), а при напряжениях пробоя выше 4 EG (≈7,2 В) полностью вытесняет туннельный механизм. Напряжение, при котором возникает лавинный пробой, с ростом температуры возрастает, а наибольшая величина ТКН пробоя наблюдается в низколегированных, относительно высоковольтных, переходах.

Механизм пробоя конкретного образца можно определить грубо — по напряжению стабилизации, и точно — по знаку его температурного коэффициента. В «серой зоне» (см. рисунок), в которой конкурируют оба механизма пробоя, ТКН может быть определён только опытным путём. Источники расходятся в точных оценках ширины этой зоны: С. М. Зи указывает «от 4 EG до 6 EG» (4,5…6,7 В), авторы словаря «Электроника» — «от 5 до 7 В», Линден Харрисон — «от 3 до 8 В», Ирвинг Готтлиб проводит верхнюю границу по уровню 10 В. Низковольтные лавинные диоды (LVA) на напряжения от 4 до 10 В — исключение из правила: в них действует только лавинный механизм.

Оптимальная совокупность характеристик стабилитрона достигается в середине «серой зоны», при напряжении стабилизации около 6 В. Дело не столько в том, что благодаря взаимной компенсации ТКН туннельного и лавинного механизмов эти стабилитроны относительно термостабильны, а в том, что они имеют наименьший технологический разброс напряжения стабилизации и наименьшее, при прочих равных условиях, дифференциальное сопротивление. Наихудшая совокупность характеристик — высокий уровень шума, большой разброс напряжений стабилизации, высокое дифференциальное сопротивление — свойственна низковольтным стабилитронам на 3,3—4,7 В.

СТАБИЛИЗАТОРЫ

Стабилизатор напряжения — преобразователь электрической энергии, позволяющий получить на выходе напряжение, находящееся в заданных пределах при значительно больших колебаниях входного напряжения и сопротивления нагрузки. По типу выходного напряжения стабилизаторы делятся на стабилизаторы постоянного тока и переменного тока. Как правило, тип питания (постоянный либо переменный ток) такой же, как и выходное напряжение, хотя возможны исключения.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.