Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Методы измерения дальности



Известны различные подходы к классификации методов измерения дальности. В соответствии с параметрами сигналов существуют амплитудный, фазовый или частотный методы измерения.

 

1. Амплитудный метод

При амплитудном методе измерения определяется время запаздывания характерного изменения амплитуды принимаемого радиолокационного сигнала. Из различных видов модуляции излучаемых колебаний наиболее употребительной является импульсная.

Рассмотрим устройство импульсной дальномерной РЛС (рис. 2.1 и 2.2). Передатчик станции генерирует радиоимпульсы длительностью tи с периодом повторения Ти (напряжение u2 на рис.2.2). Антенный переключатель (АП) подсоединяет антенну к передатчику на время генерации (tи) и к приёмнику на всё остальное время. Отражённые импульсные сигналы запаздывают на время tD; на вход приёмника поступают и колебания передатчика и отражённые сигналы (u3).

 

 

 

Рис.2.1. Функциональная схема импульсного измерителя дальности (а) изображение сигналов на экране электроннолучевого индикатора (б)

 

Время запаздывания отражённых сигналов мало (оно составляет тысячные или даже миллионные доли секунды), и обычные часовые механизмы для его измерения непригодны. Одним из наиболее употребительных приборов для измерения времени запаздывания является электроннолучевая трубка. На рис.2.1, а показана трубка с электростатическим управлением. К вертикально отклоняющим пластинам трубки подводятся импульсы напряжения с выхода приёмника u4; к горизонтально отклоняющим пластинам от специальной схемы подводится пилообразное напряжение u5(рис.2.2). Передатчик и схема создания пилообразного напряжения запускаются одновременно импульсами синхронизирующего устройства, поэтому одновременно с излучением импульса передатчика начинается горизонтальное перемещение пятна по экрану трубки.

 

 

 

Рис.2.2. Эпюры напряжений в точках 1-5 схемы импульсного дальномера (рис.2.1, а).

 

Картина, наблюдаемая на индикаторе, иллюстрируется рис.2.1,б, пятно воспроизводит огибающие излучённого и отражённого импульсов, расстояние между которыми l пропорционально дальности обнаруженной цели:

, (2.1)

где VП – скорость движения пятна по экрану индикатора, откуда

. (2.2)

Достоинства импульсных дальномеров:

ü возможность построения РЛС с одной антенной;

ü простота индикаторного устройства;

ü удобство одновременного измерения дальности многих целей;

ü простота разделения излучаемых импульсов, длящихся очень малое время tи, и принимаемых сигналов.

Недостатки импульсного метода:

ü необходимость использования больших импульсных мощностей передатчиков;

ü невозможность измерения малых дальностей;

ü большая минимальная дальность станции (определяющаяся длительностью излучаемых импульсов и временем протекания переходных процессов в антенном переключателе), которая составляет сотни или даже тысячи метров.

 

2. Частотный метод

Частотный метод определения дальности основан на использовании частотной модуляции излучаемых непрерывных колебаний; время запаздывания определяется путём измерения разности частот излучённых колебаний и отражённого сигнала. Функциональная схема РЛС с частотной модуляцией изображена на рис.2.3.

 

 

Рис.2.3. Функциональная схема измерителя дальности с частотной модуляцией.

 

Генератор высокой частоты, управляемый модулятором, вырабатывает колебания с частотой, изменяющейся по периодическому закону (рис.2.4, сплошная линия). Частота сигнала, отражённого от неподвижной цели, будет изменяться по такому закону, но только со сдвигом по временной оси на время запаздывания tD.

На рис. 2.4, а частота отражённых колебаний показана штриховой линией. Отражённые сигналы и колебания генератора подводятся к смесителю. Образующаяся на выходе смесителя разностная частота (рис.2.4, б) (частота биений) пропорциональна дальности цели. Если круговая частота излучения

,

 

 

Рис. 2.4. Изменение частоты излучаемых и принимаемых колебаний:

а) - частоты излучённого и принятого сигнала;

б) - преобразованный сигнал (биения);

в) - изменение частоты преобразованного сигнала.

 

где Dwм – девиация частоты передатчика, то частота сигнала, отражённого от неподвижной цели, будет равна

.

Разностная частота, выделяемая на выходе смесителя,

. (2.3)

Откуда

. (2.4)

Формулы (2.3) и (2.4) поясняют зависимость между дальностью цели и разностной частотой и позволяют понять сущность метода.

Для измерения разностных частот используются фильтры и счётчики импульсов. При использовании фильтров возможны два варианта: применяется группа фильтров, настроенных на фиксированные частоты, или один фильтр с переменной настройкой. Попадание сигнала разностной частоты в тот или иной фильтр (на что укажет соответствующий индикатор, например неоновая лампочка) позволит определить дальность цели.

Дальномеры данного типа позволяют определять очень малые дальности и использовать передатчики с малой мощностью излучения.

Недостатки дальномеров с частотной модуляцией:

ü необходимость использования либо двух антенн, либо сложного устройства для разделения излучаемых и принимаемых сигналов;

ü ухудшение чувствительности приёмника вследствие просачивания в приёмный тракт через антенну излучения передатчика, подверженного случайным изменениям;

ü высокие требования к линейности изменения частоты.

 

3. Фазовые методы

Фазовые методы основаны на измерении разности фаз излучённых синусоидальных колебаний и принятых радиосигналов. Функциональная схема простейшего фазового дальномера изображена на рис.2.5.

 

 

Рис.2.5. Функциональная схема простейшего фазового

измерителя дальности.

 

Генератор создаёт незатухающие колебания частоты w0, излучаемые в пространство. Фаза излучённых колебаний

,

где y1 – начальное значение фазы.

Фаза принимаемого сигнала

.

Здесь yотр – фазовый сдвиг, связанный с отражением радиоволны от цели;

yРЛС – фазовый сдвиг в цепях РЛС, который можно считать известным, так как он поддаётся измерению и может быть учтён.

Принятые колебания сравниваются с колебаниями высокочастотного генератора; разность фаз пропорциональна дальности цели

(2.5)

или

. (2.6)

Данный метод измерения практически не используют по двум обстоятельствам. Во–первых, очень мал диапазон однозначного измерения и, во–вторых, в формулу (2.6) входит неизвестная величина yотр. Неоднозначность измерений определяется тем, что фазометрическое устройство позволяет определять фазовые сдвиги только в пределах от 0 до 2p. Допустив, что Dy£2p, из формулы (2.6) получим, что диапазон однозначного измерения дальности не превышает половины длины волны: .

В радиолокации используются ультракороткие волны и, следовательно, диапазон однозначно измеряемой дальности не превышает единиц метров. Что касается фазового сдвига yотр, образующегося при отражении высокочастотных колебаний от цели, то, поскольку он весьма сложным образом зависит от конфигурации цели, её размеров и расположения относительно РЛС, то заранее знать нельзя и поэтому нельзя корректировать показания измерителя.

Указанные недостатки простейшего фазового дальномера устраняются при использовании более сложных схем, в которых применяется не менее двух частот.

 

 

Рис.2.6. Функциональная схема фазового измерителя

дальности с модулятором.

 

На рис.2.6 изображена функциональная схема фазового дальномера с использованием низкой частоты W, на которой осуществляется измерение фазового сдвига, и высокой w0, играющей роль переносчика информации.

Модулятор создаёт синусоидальное напряжение , модулирующее по амплитуде колебания генератора высокой частоты:

,

где m - коэффициент модуляции.

Модулированные колебания излучаются в пространство. Принятые сигналы после усиления детектируются, и выделяется их огибающая, фаза которой сравнивается с фазой колебаний модулятора. Фаза огибающей принятых сигналов зависит от дальности цели

. (2.7)

В формулу (2.7) не включён фазовый сдвиг огибающей колебаний при отражении yотр, который пренебрежимо мал.

Фазовый сдвиг в цепях РЛС yРЛС может быть измерен и учтён при градуировке фазометрического устройства. Разность фаз низкочастотных колебаний позволяет определить дальность цели

. (2.8)

Частота может быть выбрана достаточно низкой, что обеспечит большой диапазон однозначно измеряемых дальностей.

Данное дальномерное устройство характеризуется рядом достоинств:

ü требуется малая мощность излучения, так как генерируются незатухающие колебания;

ü точность измерения дальности практически не зависит от доплеровского сдвига частоты отражённого сигнала;

ü просто само измерительное устройство.

Недостатки:

ü - отсутствует разрешение по дальности, так как при наличии одновременно двух целей их сигналы раздельно наблюдать нельзя;

ü - чувствительность приёмника ухудшается вследствие просачивания излучения передатчика;

ü - необходимы две антенны или система развязки излучаемых и принимаемых колебаний.

Известен другой вариант двухчастотного фазового дальномера (рис.2.7).

РЛС включает два генератора высокочастотных колебаний и два приёмника, работающих соответственно на частотах w1 и w2. Колебания обоих генераторов подводятся к передающей антенне, а также к первому смесителю; с выхода приёмников два сигнала воздействуют на второй смеситель.

 

Рис.2.7.Функциональная схема двух частотного фазового

измерителя дальности.

 

Пусть напряжение генераторов:

и

.

На выходе первого смесителя получим колебания первой разностной частоты

.

Если не учитывать фазовых сдвигов в цепях РЛС, то оба принятых сигнала могут быть записаны как

и напряжение второй разностной частоты на выходе второго смесителя

.

При условии, что излучаемые частоты мало отличаются друг от друга , фазовые сдвиги при отражении от цели на обеих частотах можно считать одинаковыми, т. е. yотр1»yотр2.

Измерение фазового сдвига Dy позволяет определить дальность цели

. (2.9)

Анализ формулы (2.9) показывает, что в рассмотренном дальномере может быть обеспечен большой диапазон однозначного измерения дальности [разность (w1-w2) является малой величиной], а также исключается влияние на результат измерений фазового сдвига yотр. Такому дальномеру присущи перечисленные выше достоинства и недостатки, свойственные всем РЛС с непрерывным излучением.

 

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.