Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Трансформаторы — охлаждение



Потери мощности X.X.

9. Трансформаторы. . Условные обозначения. Основные характеристики

 

Трансформаторы — это устройства для преобразования переменного тока и напряжения. Трансформаторы — это преобразовательные устройства не имеющее подвижных частей. Трансформаторы не имеет значительных потерь мощности. Современные трансформаторы имеют высокий КПД свыше 99 %. Трансформатор состоит из нескольких проволочных обмоток, находящихся на магнитопроводе (сердечнике) из ферромагнитного сплава.

 

Трансформаторы — принцип действия

Принцип действия трансформатора основан на явлении электромагнитной индукции. На первичную обмотку трансформатора, подаётся напряжение от внешнего источника переменного тока. Протекающий по первичной обмотке переменный ток создаёт переменный магнитный поток в сердечнике трансформатора. В результате электромагнитной индукции, переменный магнитный поток в сердечнике трансформатора создаёт в обмотках ЭДС индукции, в том числе и в первичной обмотке. НДС индукции пропорциональна первой производной магнитного потока.

Трансформаторы — передача электроэнергии — использование в электросетях

Потери на нагревание электрических проводов пропорциональны квадрату тока через провод. При передаче электроэнергии на большое расстояние целесообразно использовать высокие напряжения и небольшие силы токов. Для наиболее выгодной транспортировки электроэнергии и применяют трансформаторы: сначала для повышения напряжения с клемм генераторов электростанций (повышающие трансформаторы), перед транспортировкой электроэнергии, а затем для понижения напряжения в линии электропередач (понижающие трансформаторы) до приемлемого для энергопотребителей уровня.

По технике безопасности в бытовых электроприборах используются небольшие напряжения (380/220В). В электрической сети три фазы, поэтому для преобразования напряжения применяют трёхфазные трансформаторы, или группу из трех однофазных трансформаторов соединенные в схему звезды или треугольника. Трёхфазный трансформатор имеет общий сердечник для трех фаз.

Трансформаторы — охлаждение

В крупных трансформаторах, применяемых в электроэнергетике, выделяется большая тепловая мощность. 1000 МВт электрической мощности дают несколько мегаватт тепла. Поэтому в трансформаторах применяют систему охлаждения: трансформатор помещается в емкость, наполненную трансформаторным маслом. Масло циркулирует под действием конвекции или при помощи насосов между емкостью для масла и радиатором. В некоторых случаях трансформаторное масло дополнительно охлаждают водой.

Основные характеристики:

В связи с этим основными характеристиками трансформатора являются напряжение обмоток и мощность, передаваемая трансформатором.
Передача мощности от одной обмотки к другим происходит электромагнитным путем, т. е. посредством намагничивания активной стали при прохождении тока по обмоткам трансформатора и создания магнитного поля взаимоиндукции между обмотками. При этом часть мощности, поступающей к трансформатору из питающей электросети, расходуется на преодоление магнитного сопротивления сердечника и сопротивления провода обмоток протекающему току. Эта мощность не поступает в питаемую от трансформатора сеть, так как теряется в трансформаторе, и представляет собой потери, величина которых зависит от конструкции трансформатора.
При передаче мощности через трансформатор напряжение на вторичных обмотках изменяется при изменении нагрузки за счет падения напряжения в трансформаторе, которое определяется величиной реактивного сопротивления трансформатора — напряжением короткого замыкания (ек).
Таким образом, величина потерь мощности в трансформаторе и напряжение короткого замыкания также являются важными характеристиками трансформатора, поскольку от них зависит экономичность работы трансформатора и режим работы электросети.

Условные обозначения:

Т-3-х фазный

О- однофазный

М- масленое охлаждение

С-сухой

Д- масленное с дутьем

Обдувание бака при помощи вентилятора

У- принцип циркуляции масла через водяной охладитель

Третья буква Н-в ТП есть РПН;

Ансампфа-отпайки

Срок службы транс –ра 50 лет,

10.Трансформаторы. Схемы замещения.

Трансформа́тор (от лат. transformo — преобразовывать) — это статическое электромагнитное устройство, имеющее две или более индуктивно связанные обмотки на каком-либомагнитопроводе и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем (напряжений) переменного или постоянного тока в одну или несколько других систем (напряжений), без изменения частоты.

Трансформатор осуществляет преобразование напряжения переменного или постоянного тока и/или гальваническую развязку в самых различных областях применения — электроэнергетике, электронике и радиотехнике.

Конструктивно трансформатор может состоять из одной (автотрансформатор) или нескольких изолированных проволочных, либо ленточных обмоток (катушек), охватываемых общим магнитным потоком, намотанных, как правило, на магнитопровод (сердечник) из ферромагнитного магнито-мягкого материала.

Т-образная схема замещения.

Г-образная схема замещения.

11.Трансформаторы. Нагрузочная способность силовых трансформаторов.

 

Нагрузочная способность трансформаторов — это совокупность допустимых нагрузок и перегрузок.

Допустимая нагрузка — это не ограниченная во времени длительная нагрузка, при которой износ изоляции обмоток от нагрева не превосходит износ, соответствующий номинальному режиму работы.

Перегрузка трансформатора — режим, вызывающий ускоренный износ изоляции. Такой режим возникает, если нагрузка на данный трансформатор окажется больше его номинальной мощности или температура охлаждающей среды больше принятой расчетной +200 С.

Перегрузки могут быть аварийными и систематическими.

Аварийные перегрузки делятся на два типа:

· кратковременные (вне зависимости от предшествующей нагрузки, температуры охлаждающей среды и места установки трансформатора);

· длительные (в зависимости от предшествующей нагрузки, введенные в государственный стандарт с учетом нужд и требований энергосистем).

 

12.Трансформаторы. Регулирование напряжения.

Регули́рованиенапряже́ниятрансформа́тора — изменение числа витков обмотки трансформатора. Применяется для поддержания нормального уровня напряжения у потребителей электроэнергии.

Большинство трансформаторов[каких?] оборудовано некоторыми приспособлениями для настройки коэффициента трансформации путём добавления или отключения числа витков.

Настройка может производиться с помощью переключателя числа витков трансформатора под нагрузкой либо путём выбора положения болтового соединения при обесточенном и заземлённом трансформаторе.

Степень сложности системы с переключателем числа витков определяется той частотой, с которой надо переключать витки, а также размерами и ответственностью трансформатора.

 

13.Трехобмоточные трансформаторы. Особенности работы.

Трехобмоточный трансформатор

В трехобмоточном трансформаторе имеются три электрически не связанные друг с другом

обмотки, из которых одна является первичной, а две другие — вторичными.

Схема трехобмоточного трансформатора

Первичная обмотка трансформатора является

намагничивающей и создает в магнитопроводе

магнитный поток, который пронизывает две

вторичные обмотки и наводит в них ЭДС Е2 и Е3.

Магнитный поток, созданный током первичной

обмотки, замыкается по магнитопроводу,

пересекая витки вторичной обмотки (обмотки

низкого напряжения). На зажимах вторичной

обмотки возникает напряжение. Если на каждый

стержень добавить еще по одной обмотке,

расположенной концентрически относительно первых двух магнитный поток будет пересекать

витки этой обмотки так же, как и двух других. Таким образом, напряжение сети U1

трансформируется одновременно в два напряжения: U2 и U3. Такой трансформатор в отличие от

обычногодвухобмоточного называют трехобмоточным.

По существу трехобмоточный трансформатор представляет собой два трансформатора, которые

могут работать как раздельно, так и одновременно. Но, конечно, мощность, получаемая

первичной обмоткой, должна быть всегда равна суммарной нагрузке вторичной и третьей

обмоток.

Процессы работы каждой в отдельности пары (состоящей из первичной и одной из двух других)

обмоток трехобмоточного трансформатора при различных режимах нагрузки можно представить

такими же векторными диаграммами, как и двухобмоточного. При одновременной работе всех

трех обмоток диаграмма строится аналогично с учетом того, что первичный ток является теперь

геометрической суммой трех токов: холостого хода и токов вторичной и третьей обмоток.

Трехобмоточные трансформаторы имеют довольно широкое распространение. Их применение во

многих случаях весьма целесообразно: первоначальная стоимость и потери энергии одного

трехобмоточного трансформатора меньше стоимости и потерь в двух обычных двухобмоточных

трансформаторах, рассчитанных на мощности вторичной и третьей обмоток.

 

14Автотрансформаторы. Особенности работы.

А́втотрансформа́тор — вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только магнитную связь, но и электрическую. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать разные напряжения.

Преимуществом автотрансформатора является более высокий КПД, поскольку лишь часть мощности подвергается преобразованию — это особенно существенно, когда входное и выходное напряжения отличаются незначительно. Недостатком является отсутствие электрической изоляции (гальванической развязки) между первичной и вторичной цепью.

При прохождении переменного тока по обмотке автотрансформатора возникает переменный магнитный поток,индуктирующий в этой обмотке электродвижущую силу, величина которой прямо пропорциональна числу витков обмотки.

Следовательно, если во всей обмотке автотрансформатора, имеющей число витков , индуктируется электродвижущая сила , то в части этой обмотки, имеющей число витков , индуктируется электродвижущая сила . Соотношение величин этих ЭДС выглядит так: , где — коэффициент трансформации.

Так как падение напряжения в активном сопротивлении обмотки автотрансформатора относительно мало, то им практически можно пренебречь и считать справедливыми равенства и ,

где — напряжение источника электрической энергии, поданное на всю обмотку автотрансформатора, имеющую число витков ;

— напряжение, подаваемое к потребителю электрической энергии, снимаемое с той части обмотки автотрансформатора, которая обладает количеством витков .

Следовательно, .

Напряжение , приложенное со стороны источника электрической энергии ко всем виткам обмотки автотрансформатора, во столько раз больше напряжения , снимаемого с части обмотки, обладающей числом витков , во сколько раз число витков больше числа витков .

 

15.Виды потерь мощности в воздушных и кабельных линиях.

 

Потери активной мощности на участке ЛЕП (см. рис. 7.1) обусловлены активным сопротивлением проводов и кабелей, а также несовершенством их изоляции. Мощность, теряемая в активных сопротивлениях трехфазной ЛЕП и расходуемая на ее нагрев, определяется по формуле:

 

,

где полный, активный и реактивный токи в ЛЕП;

P, Q, S – активная, реактивная и полная мощности в начале или конце ЛЕП;

U – линейное напряжение в начале или конце ЛЕП;

R – активное сопротивление одной фазы ЛЕП.

Потери активной мощности в проводимостях ЛЕП обусловлены несовершенством изоляции. В воздушных ЛЕП – появлением короны и, в очень незначительной степени, утечкой тока по изоляторам. В кабельных ЛЕП – появлением тока проводимости а его абсорбции. Рассчитываются потери по формуле:

 

,

 

где U – линейное напряжение в начале или конце ЛЕП;

G – активная проводимость ЛЕП.

При проектировании воздушных ЛЕП потери мощности на корону стремятся свести к нулю, выбирая такой диаметр провода, когда возможность возникновения короны практически отсутствует.

Потери реактивной мощности на участке ЛЕП обусловлены индуктивными сопротивлениями проводов и кабелей. Реактивная мощность, теряемая в трехфазной ЛЕП, рассчитывается аналогично мощности, теряемой в активных сопротивлениях:

 

 

Генерируемая емкостной проводимостью зарядная мощность ЛЕП рассчитывается по формуле:

 

,

 

где U – линейное напряжение в начале или конце ЛЕП;

B – реактивная проводимость ЛЕП.

Зарядная мощность уменьшает реактивную нагрузку сети и тем самым снижает потери мощности в ней.

 

16. потери электро энергии в электрических сетях

Стоимость потерь – это часть затрат на передачу и распределение электроэнергии по электрическим сетям. Чем больше потери, тем выше эти затраты и соответственно тарифы на электроэнергию для конечных потребителей. Известно, что часть потерь является технологическим расходом электроэнергии, необходимым для преодоления сопротивления сети и доставки потребителям выработанной на электростанциях электроэнергии. Этот технологически необходимый расход электроэнергии должен оплачиваться потребителем. Он-то, по существу, и является нормативом потерь.

17.Характеристики и формы представления графиков нагрузки.

Изменение электрической нагрузки во времени называется графиком электрической нагрузки. Графики электрических нагрузокстроятся в прямоугольных координатах и представляются плавными кривыми или ломаными линиями.

На рис. 1 показаны различные способы представления графиков электрических нагрузок Р= f(t). Графики нагрузок могут быть представлены плавными кривыми линиями и ломаными (ступенчатыми) линиями с интервалом осреднения на каждой ступени 30 мин (рис. 1,а) и 60 мин (рис. 1,б) в зависимости от времени достижения предельно допустимой температуры при максимальной нагрузке.

Графики электрических нагрузок строятся с помощью самопишущих приборов (амперметры, ваттметры), по визуальному отсчету показаний стрелочных приборов через равные промежутки времени, по отсчету показаний счетчиков активной энергии через те же интервалы времени. График, построенный с помощью самопишущего прибора, является криволинейным, а построенный по показаниям счетчиков энергии – ступенчатым, где на каждой ступени показывается средняя мощность за контролируемый промежуток времени.

Нагрузка в каждый момент времени является величиной случайной, закон распределения которой во времени изменяется.

Графики электрических нагрузок строятся как для одиночных электроприемников, так и для их групп. Для одиночных электроприемников строятся индивидуальные графики и для группы электроприемников – групповые графики.

Рис. 1. Сменные графики электрических нагрузок, выраженные кривыми и ломаными линиями: а – с интервалом осреднения 30 мин.; б – с интервалом осреднения 60 мин.

Характер и форма индивидуального графика нагрузки электроприемника определяются технологическим процессом. Групповой график представляет собой результат суммирования индивидуальных графиков электроприемников, входящих в группу. Конфигурация группового графика зависит от многих случайных факторов – различной загрузки отдельных электроприемников, сдвигом во времени их включения и отключения. Устойчивые графики для отдельных предприятий, производств называют типовыми.

Графики электрических нагрузок во времени действия нагрузки делят на сменные, суточные, месячные, сезонные (летние, зимние) и годовые.

Сменные графики строят за время продолжительности смены с учетом технологических перерывов в работе электроприемников. Суточные графики охватывают время от 0 до 24 часов. При построении графика принимают среднюю нагрузку за время осреднения. На этом графике выделяют наиболее загруженную смену, т.е. смену, в течение которой наблюдается наибольший выпуск продукции и наибольшее потребление электроэнергии. Такие графики характерны для предприятий и производств с 2-х – 3-х – сменным и непрерывным режимом работы. Месячные графики строят с целью определения расхода электроэнергии на производственные и непроизводственные нужды и оплаты за электроэнергию. При анализе таких графиков можно выделить недели, декады, в течение которых имеет место наибольший выпуск продукции и наибольшее потребление электроэнергии.

По сезонным и годовым графикам определяют максимальную нагрузку, зависящую от сезонных факторов (отопление, вентиляция, подача воды на непроизводственные нужды), расход электроэнергии за сезон и год. На рис. 2 представлен суточный график активной и реактивной нагрузки группы сельскохозяйственных предприятий при трехсменной работе в зимнее время.

 

Рис. 2. Суточный график активной (Р), реактивной (Q) нагрузки

Из суточного графика видно, что наиболее загруженной сменой является вечерняя (с 16 до 24 часов), менее загруженной – ночная (с 23 до 7 часов). Максимальная нагрузка наблюдается с 18 до 20 часов. В это время наряду с силовой нагрузкой технологического оборудования добавляется осветительная нагрузка. Максимальная нагрузка из приведенного графика принимается за расчетную нагрузку при выборе электрических устройств по допустимому нагреву.

На графике электрических нагрузок площадь, ограниченная ломаной линией изменения активной нагрузки Р = f(t) и осями координат, представляет собой активную энергию Wa, потребляемую приемниками из сети для преобразования в другие виды.

Площадь, ограниченная линией изменения реактивной нагрузки Q=f(t) и осями координат, выражает реактивную энергию Wp, циркулирующую между сетью и электроприемниками. Эта энергия необходима электроприемникам для создания магнитных полей.

Годовой график нагрузки может быть построен аналогично суточному графику, т. е. по средним мощностям, но не за 30, 60 мин, а за месяц (рис. 3, а).

Рис. 3. Годовой график изменения активной мощности: а – по средним месячным мощностям; б – по продолжительности

Чаще строят годовые графики по продолжительности. Такой график представляет собой кривую изменения убывающей нагрузки в течение года (8760 час). Годовой график по продолжительности (рис. 3, б) можно построить по годовому графику, построенному по средним месячным мощностям (рис. 3, а) или двум характерным суточным графикам нагрузки за зимние и летние сутки.

При этом условно принимают, что продолжительность зимнего периода 213 суток или 183 суток, а летнего – 152 или 182 суток в зависимости от климатического района, в котором находится промышленное предприятие. На рис. 4 показаны графики электрической нагрузки: годовой график по продолжительности (рис. 4, в), построенный на основании суточных графиков – зимнего (рис. 4, а) и летнего (рис. 4, б).

Рис. 4. Графики электрических нагрузок: а – суточный зимнего периода; б – суточный летнего периода; в – годовой график по продолжительности

Для построения годового графика можно воспользоваться вспомогательной таблицей (табл. 1).

Таблица 1

Вспомогательная таблица для построения годового графика

Почасовые максимумы нагрузок, кВт Число часов работы с нагрузкой в сутки сезона, ч Число часов работы с нагрузкой за год, ч
зима лето
400 и более
350 и более
300 и более
250 и более
200 и более
150 и более
100 и более
50 и более

 

Построенный годовой график по продолжительности еще называют упорядоченным графиком, т.к. он построен по порядку убывающих ординат. Ступенчатый график с ломаной линией изменяющейся нагрузки можно заменить графиком с плавно изменяющейся кривой, но при этом площадь, ограниченная ломаной или плавной кривой и осями координат, должна оставаться постоянной.

19. падение напр и потеря напряж

Потерей напряжения алгебраическую разность фазных напряжений в начале и конце линии. Потеря напряжения зависит от параметров сети, а также от активной и реактивной составляющих тока илимощности нагрузки. Падение напряжения – это геометрическая разность между векторами напряжений в начале и конце элемента сети.

 

21.Баланс активной мощности

В любой момент установившегося режима суммарная мощность ,выработанная генератором эл. станции равна суммарной потребляемой мощности в этот момент времени.Такое соотношение мощностей называется балансом мощностей.
Уравнение баланса мощностей:

Баланс активной мощности в АЭС.
Составляется для периода прохождения годового максимума нагрузки. Величина активной суммарной мощности потребителей при эксплуатационных расчетов определяется суммированием максимальных мощностей узлов нагрузок с учетом коэффициента равновременности максимумов.
При соблюдении баланса,частота вращения турбин генератора неизменна.
Согласно ГОСТ 1310997 не должно превышать ±2Гц

 

 

22.Баланс реактивной мощности

Генерация реактивной мощности в ЭС осуществляется не только генераторами эл.станций,но и высоковольтными ВЛ и КЛ(емкостная проводимость,компенсирующие устройства)
Баланс реактивной мощности рассчитывается,как правило для режима наибольшей нагрузки.
Суммарная реактивная мощность потребителя определяется на основе их коэффициента мощности.

23.Устройство компенсации реактивной мощности

Компенсация реактивной мощности — целенаправленное воздействие на баланс реактивной мощности в узле электроэнергетической системы с целью регулирования напряжения, а в распределительных сетях и с целью снижения потерь электроэнергии.
Основные компоненты компенсаторов
1.Источники емкостной реактивной мощности — конденсаторы
2.Регулятор реактивной мощности — устройство, измеряющее и поддерживающее величину cosφ на заданном оптимальном уровне путем выдачи команд на исполнительные устройства без участия персонала
3.Исполнительные устройства, подключающие и отключающие конденсаторы необходимой мощности в необходимом количестве в зависимости от команд регулятора
К устройствам компенсации реактивной мощности относится следующее оборудование:
Кондесаторныебатареи(БСК)
Шунтирующие реакторы
Фильтры высших гармоник
Статические тиристорные компенсаторы (СТК)
Практическая польза от компенсации реактивной мощности — это уменьшение нагрузки на кабельные трассы, то есть снижение опасности аварии и возможность использования кабеля меньшего сечения; увеличение срока службы трансформаторов; повышение качества электроэнергии для потребителей; снижение нагрузки на коммутационные узлы; снижение расходов на электроэнергию.

24.Способы и средства регулировки напряжения в электрических системах

Регулирование напряжения в электрических сетях сложно осуществлять, изменяя:
а) напряжение генераторов электростанций;
б) коэффициент трансформации трансформаторов и автотрансформаторов;
в) параметры питающей сети
г) величину реактивной мощности, протекающей по сети.

Применением перечисленных способов обеспечивается централизованное регулирование напряжения, однако последние три из них могут быть применены и для местного регулирования.
а)Регулирование напряжений в сетях генераторами эл. станций.
На генераторах, работающих на шины генераторного напряжения с присоединенной к ним распределительной сетью, напряжение регулируется в меньших пределах, так как глубокое изменение напряжения оказалось бы неприемлемым для потребителей. При регулировании реактивной мощности на этих генераторах по заданному графику нагрузки системы уровень напряжения на шинах, необходимый для нормальной работы потребителей, достигается изменением коэффициента трансформации трансформаторов с РПН, связывающих генераторы с сетью ВН
Генераторы, работающие в блоках с повышающими трансформаторами, не имеют непосредственной связи с распределительными сетями генераторного напряжения, а нагрузка собственных нужд, как правило, питается через трансформаторы с регулированием напряжения под нагрузкой. Поэтому широкое изменение генерации реактивной мощности ими и связанное с этим значительное изменение напряжения на зажимах генераторов не вызывают особых затруднений. Обычно на блочных генераторах используют полный возможный предел изменения напряжения в соответствии с ПТЭ:от —5% до+10% UН.
В тех случаях, когда трансформаторы связи генераторов с сетью ВН не имеют РПН, регулирование напряжения на шинах генераторного напряжения производится изменением возбуждения генераторов, с одновременным (автоматическим) изменением их реактивной мощности. Регулирование — встречное и осуществляется по суточному графику напряжения, задаваемому диспетчером электрических сетей.
б)Регулирование напряжения изменением коэффициента трансформации трансформаторов, изменением параметров сети, изменением величины реактивной мощности.
Для обеспечения централизованного суточного регулирования напряжения на подстанциях, питающих распределительные сети, устанавливают трансформаторы с РПН, переключение ответвлений у которых производится без перерыва электроснабжения потребителей. Трансформаторы снабжаются аппаратурой автоматического регулирования — регуляторами напряжения.
в)Регулирование напряжения в сетях изменением параметров сети.
В некоторых пределах напряжение можно регулировать, изменяя сопротивление питающей сети. Так, если питающая сеть или ее участок состоит из нескольких параллельных линий, то, отключая в часы минимальных нагрузок одну из таких линий, можно увеличить потерю напряжения в питающей сети и тем понизить напряжение у потребителя.
Снижения реактивного сопротивления цепи и, следовательно, увеличения напряжения при максимальных нагрузках можно добиться, применяя продольную компенсацию индуктивности линии.
В линиях дальних передач продольную компенсацию используют для повышения их пропускной способности. Число конденсаторов в батарее для продольной компенсации определяется требуемым уровнем напряжения на приемной подстанции и максимальной нагрузкой линии. В электропередачах высокого напряжения обычно компенсируют не свыше 40—50% индуктивности линии, так как большая степень компенсации может привести к ложным действиям релейной защиты, а при известных условиях и к колебательному режиму (самораскачиванию) синхронных генераторов.
г)Регулирование напряжения в сетях изменением величины реактивной мощности в них.
Эффективно регулировать напряжение путем изменения реактивной мощности в сети можно с помощью синхронных компенсаторов или батарей конденсаторов при включении их параллельно нагрузке.
Синхронный компенсатор (СК) устанавливают на приемной подстанции и присоединяют к шинам НН подстанции или к обмотке НН автотрансформатора. Такой компенсатор представляет собой синхронный электродвигатель и при перевозбуждении является емкостной нагрузкой для сети или, что все равно, генератором реактивной индуктивной мощности, а при недовозбуждении становится потребителем реактивной мощности. Таким образом, изменяя возбуждение синхронного компенсатора, непосредственно влияют на величину реактивной мощности, протекающей по сети, и следовательно, нанапряжение у потребителя.

 

25.Понятие экономической плотности тока

Экономической плотностью тока называется такая плотность, при которой суммарные годовые расходы для данного участка электрической сети будут минимальными. Она прямо пропорциональна капитальным затратам на сооружение и обслуживание и обратно пропорциональна стоимости потерь электрической энергии на данном участке сети.

Экономическая плотность тока-это такая плотность тока, при которой нагрузка по линии осуществляется при наименьших затратах

 

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.