Вода служит не только наиболее распространенным растворителем для многих веществ, но и сама является очень слабым амфотерным электролитом:
Н2О ↔ H+ + ОH-; ∆Н°298 = 56 кДж /моль,
в воде присутствуют катионы водорода и гидроксид - анионы в строго эквивалентных количествах. Константа ионизации воды (Кu)
Ku = [H][OH-]/[H2O],
определена по электрической проводимости и равна 1,8∙10-16 при 22 °С. Так как вода - очень слабый электролит, то концентрация недиссоциированных молекул может быть принята
равной общему числу молей в 1 дм3 воды, то есть: [Н2О] = 1000/18 = 55,56 моль/дм3.
Тогда Ки [Н20]= [H+] [ОН-] или [H+][ОН-] = 1,8∙10-16 ∙55,56 = 10-14 = Кw
Величина [Н+ ][ОН-] = 10-14 называется ионным произведением воды.Так как в воде концентрации гидратированных ионов равны, то
____
[H+]= [ОH-]= √10-14=10-7 моль/дм3
При добавлении кислоты концентрация ионов водорода увеличивается и соответственно уменьшается концентрация гидроксид – ионов, поскольку при данной температуре ионное произведение воды – величина постоянная. При добавлении щелочи наблюдается обратная зависимость. Таким образом, концентрация ионов водорода в растворе может служить мерой кислотности или щелочности среды. В кислых растворах [Н+]>10-7, в щелочных [Н+]<10-7.
В 1909 г. Сёренсен ввел значение отрицательного десятичного логарифма концентрации водородных ионов, которое называют водородным показателем рН
рН= - lg[H+].
Тогда для нейтральной среды рН = - lg10-7 = 7, для кислых растворов рН < 7, а для щелочных рН > 7. Аналогичным образом реакция среды может быть охарактеризована так называемым гидроксильным показателем рОН
рОН = -lg[OH-].
Для воды рН = рОН = 7, а изменение рОН в кислых и щелочных растворах противоположно изменению рН. Прологарифмировав ионное произведение воды, получим
Наглядно зависимость между концентрацией ионов водорода, значением рН и реакцией раствора можно выразить схемой:
Из схемы видно, что чем меньше рН, тем больше концентрация ионов Н+, т.е. тем выше кислотность среды; и наоборот, чем больше рН, тем меньше концентрация ионов Н+, т.е. тем выше щелочность среды. Исключительно важна роль реакции среды в самых различных явлениях и процессах, как в природе, так и в медицинской практике. Многие процессы, протекающие в живых организмах, требуют определенной реакции среды.
Гидролиз солей
Реакции обменного разложения между водой и соответствующими соединениями называются гидролизом.Он является частным случаем сольволиза- обменного разложения
растворенного вещества и растворителя. Наиболее типичным случаем является гидролиз солей в водных растворах. Гидролиз солей, распадающихся в растворе на ионы, зависит от природы катионов и анионов. Чем сильнее поляризующее действие ионов, тем в большей степени протекает гидролиз.
Рассмотрим гидролиз соли, образованной сильным гидроксидом и сильной кислотой Поляризующее действие невелико у катионов щелочных и щелочноземельных металлов (Nа+, К+, Ва2+), то есть катионов образующих сильные гидроксиды - щелочи, и анионов (Сl,- Вr-, I-, N0-3, СlО-4, SО2-4), образующих сильные кислоты. Поэтому соли, образованные катионами сильного гидроксида и анионами сильной кислоты, практически не подвергаются гидролизу, рН растворов таких солей 7. Например, гидролиз NаNО3:
Na+ + НОН - реакция практически не идет
N03-+ НОН - реакция практически не идет
NaNОз гидролизу практически не подвергается.
Если соль при растворении ионизуется на катионы, образующие сильные основания (Na+,К+,Ва2+) и анионы, образующие слабые кислоты (СО32-, РО4-3, SОз2-, S2-,СN-), то происходит гидролиз по аниону и в результате создается щелочная среда (рН > 7)
CO32- + HOH ↔ HCO3-; + OH-.
Такой тип гидролиза имеет место у солей сильных гидроксидов и слабых кислот. Очевидно, чем слабее кислота, тем гидролиз протекает интенсивнее. Гидролиз многозарядного аниона протекает ступенчато в связи со ступенчатой диссоциацией многоосновных кислот и при обычных условиях протекает по первой ступени. Например
К2СО3+ НОH ↔ КHСO3 + КОН
СНзСООNа + НОН ↔ СН3СООН + NаОН
Если соль при растворении ионизируется на сильно поляризующие катионы (Zп2+, Си2+, Fе3+, Сr3+, Аl3+и т.п.), образующие слабые гидроксиды и анионы сильных кислот (Сl-, Вr-, I-, NОз-, СlО4-, SО42-), то происходит гидролиз по катиону. В результате в растворе создается кислая среда (рН < 7)
Си2+ + НО↔ СиОН+ + Н+.
Этот тип гидролиза имеет место у солей слабых гидроксидов и сильных кислот. Гидролиз многозарядного катиона протекает ступенчато в связи со ступенчатой диссоциацией гидроксидов и при обычных условиях протекает по первой ступени (для металлов Ме2+) и по 1,2 ступеням (для Ме3+). Например
ZпС12 + НОН ↔ Zп(ОН)С1 + НС1
А12(S04)3 + 2НОН ↔ 2А1(ОН)SО4 + Н2SО4
2А1(ОН)SО4+ 2НОH ↔ [А1(ОН)2]2SО4 + Н2SО4
Если соль при растворении ионизируется на катионы, образующие слабые основания и анионы слабых кислот, то происходит гидролиз и по аниону и по катиону. При этом образуются малорастворимые слабые гидроксиды и слабые кислоты
А12(СО3)3 + ЗНОН = 2А1(ОН)3 + ЗСО2.
Гидролиз протекает необратимо и характер среды определяется относительной силой образующихся продуктов.
Если в раствор гидролизующейся соли ввести реактив, связывающий образующиеся ионы H+ и ОH-, то в соответствии с принципом Ле-Шателье, равновесие смещается в сторону усиления гидролиза, в результате гидролиз может протекать полностью, до образования его конечных продуктов. При этом ионы H+ или ОH- можно связать в молекулы воды, вводя в раствор не только щелочь или кислоту, но и другую соль, гидролиз которой приводит к накоплению в растворе ионов Н+или ОH-. Эти ионы будут нейтрализовывать друг друга, что вызовет взаимное усиление гидролиза обеих солей и в результате - образование конечных продуктов гидролиза. Например, при смешивании растворов Na2S и CrCl3, в которых соответственно имеется избыток ионов Н+и ОH-, взаимное усиление гидролиза приводит к выделению газа Н2S и образованию осадка Сr(ОН)3
ЗNа2S + 2СrС13 + ЗНОН = ЗН2S + 2Сr(ОН)3+ 6NaС1;
3S2- + 2Сr3+ + ЗНОН = ЗН2S + 2Сr(ОН)3.
Количественно гидролиз соли характеризуется степенью гидролиза hиконстантой гидролиза Кг,степень гидролиза. Чем слабее кислота (гидроксид), образующая (образующее) соль, тем сильнее соль гидролизуется, Кг ее больше. Гидролиз процесс эндотермический, поэтому при повышении температуры константа гидролиза увеличивается.
Буферные растворы
Если к разбавленным растворам сильных кислот или щелочей добавлять воду, кислоты или щелочи, то происходит резкое изменение [Н+] и [ОН-]. В смесях водных растворов слабых кислот и их солей, а также в смесях слабых гидроксидов и их солей концентрации ионов водорода и гидроксида зависят не от абсолютных количеств, а от соотношений кислоты или гидроксида и их солей. Это значит, что величина [H+] в таких смесях не зависит от умеренного разбавления смеси. Растворы, рН которых резко не изменяется при добавлении к ним умеренных количеств кислот, щелочей, а также при умеренном разбавлении, называются буферными растворами. Буферные растворы можно рассматривать как смеси электролитов, имеющих одноименные ионы. Такими буферными растворами являются следующие смеси
Буферные растворы, представляющие собой смеси слабых кислот и их солей, как правило, имеют кислую реакцию (рН < 7). Например, буферная смесь
0,1 М раствора СНзСООН +0,1 М раствора СН3СООNа имеет рН = 4,7. Буферные растворы, представляющие собой смеси слабых гидроксидов и их солей, как правило, имеют щелочную реакцию (рН > 7). Например, буферная смесь 0,1 М раствора NH4OH +0,1 М раствора NH4С1 имеет рН = 9,2.
Буферное действие.Действие буферных растворов основано на том, что отдельные компоненты буферных смесей связывают ионы водорода или гидроксила при добавлении к ним кислот или щелочей с образованием слабых электролитов. Например, если к буферному раствору, содержащему слабую кислоту НАn и соль этой кислоты KtАn, прибавить щелочь, то произойдет реакция образования слабого электролита - воды
Н+ + ОН ↔ Н2О.
Вместо израсходованных ионов водорода, вследствие последующей диссоциации кислоты НАn, появляются новые ионы водорода. В результате прежняя концентрация ионов Н+-ионов в буферном растворе восстановится до ее первоначального значения. Подобным образом можно объяснить действие других веществ на буферные смеси
Буферная емкость.Способность буферных растворов поддерживать постоянство значения рН не безгранична и зависит от качественного состава буферного раствора и концентрации его компонентов. При добавлении к буферному раствору значительных количеств сильной кислоты или щелочи наблюдается заметное изменение рН. Причем для различных буферных смесей буферное действие неодинаково, то есть буферные смеси можно различать по силе оказываемого ими сопротивления по отношению к действию кислот и щелочей, вводимых в буферный раствор в одинаковых количествах и определенной концентрации. Предельное количество кислоты или щелочи определенной концентрации, которое можно добавить к 1 дм3 буферного раствора, чтобы значение рН его изменилось только на единицу, называют буферной емкостью.
Если величина [Н+] одного буферного раствора изменяется при добавлении сильной кислоты (щелочи) меньше, чем величина [Н+] другого буферного раствора при добавлении того же количества кислоты (щелочи), то первая смесь обладает большей буферной емкостью. Для одного и того же буферного раствора буферная емкость тем больше, чем выше концентрация его компонентов.