Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Метаболизм клетки. Энергетический обмен



 

Метаболизм- совокупность протекающих в клетке химических превращений, обеспечивающих ее рост, жизнедеятельность, воспроизведение, обмен с окружающей средой.

 

 

Энергетический обмен

Этапы Локализация в клетке Процессы Энергетическая ценность
1 этап -подготови­тельный В пищеварительном тракте в организме. В лизососмах в клетке Происходит расщепление высокомолекулярных органических веществ до низкомолекулярных. Белки аминокислоты + Q1 Жиры глицерин + высшие жирные кислоты Полисахариды глюкоза + Q Выделяется небольшое количество тепловой энергии
2 этап -гликолиз (бескислородный) Протекает в цитоплазме, не связан с мембранами Ферментативное расщепление глюкозы -брожение. Молочнокислое брожение: (например, в мышцах) С6Н1206+2НзР04+2АДФ-»2С3Н6Оз+2АТФ+2Н20 глюкоза молочная кислота 60% энергии - тепловая 40% энергии -на синтез 2АТФ
3 этап -гидролизБиоло­гическое окисление (расщеп­ление).Дыхание Осуществляется в митохондриях. В матриксе Происходит образование С02. В результате окисления молочной кислоты под действиемферментов С3Н603 +602 ^ЗСОгТ+12Н Атом водорода с помощью ферментов-переносчиков поступает во внутреннюю мембрану митохондрии, образующую кристы Выделения энергии не происходит

 

 

Гликолизом - называется окисление глюкозы до пировиноградной кислоты. Как это видно из рисунка, из одной молекулы глюкозы (6-углеродного соединения, 6С) образуются две молекулы пировиноградной кислоты бета-углеродного соединения, 3С). Процесс протекает не в митохондриях, а в цитоплазме клетки, и кислород для него не требуется. Процесс может быть подразделен на три этапа:

1. Фосфорилирование сахара. В результате этой реакции сахар «активируется», т. е. его реакционная способность возрастает. При активации потребляется некоторое количество АТФ и, поскольку весь смысл дыхания состоит в том, чтобы поставлять АТФ, его расходование может показаться нецелесообразным. Это следует, однако, рассматривать как своего рода «инвестиции», благодаря которым позже смогут произойти реакции, приводящие к образованию АТФ.

2. Расщепление фосфорилированного 3С-сахара на два 3С-сахарофосфата. С этим связано и происхождение названия «гликолиз» (от греч. lysis — разложение, распад), Два образующихся сахарофосфата — изомеры. Прежде чем подвергнуться дальнейшему превращению, один из них переходит в другой, так что получается два идентичных 3С-сахарофосфата.

3. Окисление путем отщепления водорода.

Каждый 3С-сахарофосфат превращается в пировиноградную кислоту. При этом происходит дегидрирование с образованием одной молекулы восстановленного НАД и двух молекул АТФ. Общий выход (от двух молекул 3С-сахарофосфата) составляет: две молекулы восстановленного НАД и четыре молекулы АТФ.

Итак, на первом этапе гликолиза в реакциях фосфорилирования потребляются, две молекулы АТФ, а на третьем — образуются четыре молекулы. Таким образом, чистый выход АТФ при гликолизе равен двум молекулам. Кроме того, при гликолизе отщепляются и передаются НАД четыре атома водорода. Их судьбу мы рассмотрим позднее. Суммарную реакцию гликолиза можно записать так:

Потребление и выход различных веществ в процессе гликолиза указаны в таблице.

При использовании в процессе дыхания липидов глицерол легко превращается в 3С-сахарофосфат, который и вступает на путь гликолиза. При этом расходуется одна молекула АТФ и три молекулы образуются.

Конечная судьба пировиноградной кислоты зависит от присутствия кислорода в клетке. Если кислород имеется, то пировиноградная кислота переходит в митохондрии для полного окисления до СО2 и воды (аэробное дыхание). Если же кислорода нет, то она превращается либо в этанол, либо в молочную кислоту (анаэробное дыхание).

5).Пластический обмен у гетеротрофных и автотрофных организмов. Фотосинтез .

Пластический обмен (анаболизм, или ассимиляция) – это совокупность физиолого-биохимических процессов, протекающих с затратой высокоорганизованной энергии. В результате из простых органических и неорганических веществ образуются более сложные вещества.

Фотосинтезпроцесс образования органических веществ с затратой световой энергии.

Реакции фотосинтеза делятся на две группы:

1. Световые реакции протекают непосредственно под воздействием света на мембранах тилакоидов хлоропластов. В световых реакциях образуются: O2, АТФ и НАДФ·Н+Н+.

2. Темновые реакции протекают в строме хлоропластов как на свету, так и в темноте. Простейшим продуктом темновых реакций является глюкоза.

Световые реакции

Преобразование энергии света в энергию химических связей начинается в реакционных центрах, входящих в состав мембран тилакоидов. В составе реакционных центров обнаруживаются разнообразные сочетания пигментов: хлорофиллы а и b, каротиноиды и другие. Кроме указанных пигментов в мембранах обнаруживаются разнообразные вещества – переносчики электронов и протонов. Основные сочетания пигментов и переносчиков называются фотосистемы: фотосистема I и фотосистема II.

Универсальным способом образования АТФ является механизм нециклического фотофосфорилирования. Энергия света, поглощенная пигментами, преобразуется в энергию электронов. Свободные электроны образуются при фотолизе (фотоокислении) воды – расщеплении молекулы Н2О с затратой световой энергии. При фотолизе воды выделяется молекулярный кислород. Энергия электронов используется для создания протонных резервуаров внутри тилакоидов и формирования электрохимических потенциалов на мембранах тилакоидов. В свою очередь, энергия электрохимического потенциала используется для синтеза АТФ. Электроны, потерявшие энергию, используются для восстановления НАДФ.

В действительности световые реакции протекают более сложно.

Фотосистема II поглощает высокоэнергетические кванты света. Электроны хлорофилла переходят в возбужденное состояние, а затем молекула хлорофилла теряет один возбужденный электрон с избытком энергии. Окисленный хлорофилл отщепляет один электрон от молекулы воды. Вода разлагается на протон Н+ и свободный радикал НО·. Два радикала НО· объединяются в молекулу Н2О2, которая разлагается каталазой на Н2О и О2. Процесс расщепления воды под воздействием света называется фотолиз. При фотолизе выделяется молекулярный кислород как побочный продукт световых реакций фотосинтеза:

4 Н2О → 4 Н+ + 4 НО· + 4 ē; 4 НО· → 2 Н2О2 → 2 Н2О + О2

Высокоэнергетические электроны от молекул хлорофилла присоединяются к хинонам, образуя восстановленные хиноны (KoQ 2–). Восстановленные хиноны диффундируют на внешнюю сторону мембраны тилакоида (к строме). Здесь к хинонам присоединяются протоны, которые всегда присутствуют в водных растворах вследствие электролитической диссоциации воды. Хиноны вместе с протонами диффундируют на внутреннюю сторону мембраны (к матриксу тилакоида). Под воздействием цитохромов b протоны отщепляются от хинонов и переходят в матрикс тилакоида. Затем хиноны вновь диффундируют к строме, где вновь присоединяют протоны. Таким образом, строма служит источником протонов, а матрикс тилакоидов – протонным резервуаром.

Электроны, частично израсходовавшие энергию на перенос протонов, отщепляются от хинонов и поступают на промежуточный переносчик – цитохром f.

Фотосистема I поглощает низкоэнергетические кванты света. Электроны хлорофилла фотосистемы I переходят в возбужденное состояние, а затем молекула хлорофилла теряет один возбужденный электрон. Потерю электронов молекулы хлорофилла восполняют, забирая электроны от цитохромов f. Электроны от фотосистемы I через промежуточные мембранные переносчики (ферредоксин и другие) используются для восстановления немембранного переносчика электронов и протонов НАДФ:

НАДФ+ + 2 ē + 2 Н+ → НАДФ·Н+Н+.

Избыток протонов из матрикса переходит через канал АТФазы в строму. Энергия электрохимического потенциала используется для фотофосфорилирования – синтеза АТФ из АДФ и неорганического фосфата. В итоге энергия света расходуется на синтез АТФ и на восстановление НАДФ.

Темновые реакции

АТФ и НАДФ·Н+Н+, образовавшиеся в ходе световых реакций, используются для восстановления СО2 и образования глюкозы. Образовавшаяся глюкоза превращается в первичный крахмал.

Первичный крахмал в дальнейшем гидролизуется с образованием глюкозы. Эта глюкоза транспортируется за пределы хлоропласта: в остальные клетки и органы растения. Здесь она превращается во вторичный крахмал, используется для дыхания и для биосинтеза кислот, аминокислот и других веществ. Суммарное уравнение фотосинтеза записывается следующим образом:

6 СО2 + 6 Н2О + световая энергия → С6Н12О6 + 6 О2 + тепло

Существует несколько механизмов темновых реакций. Универсальным способом фиксации СО2 является цикл Кальвина:

Пятиуглеродный сахар рибулозодифосфат с помощью РДФ-карбоксилазы присоединяет одну молекулу СО2. Образуется неустойчивое шестиуглеродное соединение, которое разлагается на две молекулы фосфоглицериновой кислоты (ФГК). С помощью АТФ и НАДФ·Н+Н+ каждая молекула ФГК восстанавливается до фосфоглицеринового альдегида (ФГА). Одна шестая часть молекул ФГА в ходе реакций изомеризации и димеризации образуют фруктозу, которая превращается в глюкозу. Большая часть ФГА (5/6) используется на образование рибулозодифосфата.

Значение фотосинтеза

Фотосинтез является основой существования земной биосферы. Ежегодная продукция растений Земли превышает 120 млрд. тонн (в пересчете на сухое вещество). При этом поглощается примерно 170 млрд. тонн углекислого газа, расщепляется 130 млрд. тонн воды, выделяется 120 млрд. тонн кислорода и запасается 400·1015 килокалорий солнечной энергии. В процессы синтеза вовлекается около 2 млрд. тонн азота и около 6 млрд. тонн фосфора, калия, кальция, магния, серы, железа и других элементов. За 2 тысячи лет весь кислород атмосферы проходит через растения. Все это означает, что деятельность растений является процессом планетарного масштаба.

В клетках растений одновременно протекают и фотосинтез, и дыхание. Для повышения продуктивности сельскохозяйственных растений изменяют соотношение между реакциями дыхания и фотосинтеза в пользу последних. Например, в условиях защищенного грунта увеличивают продолжительность светового дня, повышают интенсивность освещения, обеспечивают дополнительную подкормку углекислым газом, снижают ночную температуру. Усилия селекционеров должны быть направлены на выведение интенсивных высокопродуктивных сортов.

6).Строение и свойства белков.

Структурная единица белка- аминокислота.

КЛАССИФИКАЦИЯ БЕЛКОВ

Белки подразделяются на две большие группы: простые белки, или протеины, и сложные белки, или протеиды.

При гидролизе протеинов в кислом водном растворе получают только а-аминокислоты. Гидролиз протеидов дает кроме аминокислот и вещества небелковой природы (углеводы, нуклеиновые кислоты и др.) ; это соединения белковых веществ с небелковыми.

Протеины.

Альбумины хорошо растворяются в воде. Встречаются в молоке, яичном белке и крови.

Глобулины в воде не растворяются, но растворимы в разбавленных растворах солей. К глобулинам принадлежат глобулины крови и мышечный белок миозин.

Глутелины растворяются только в разбавленных растворах щелочей. Встречаются в растениях.

Склеропротеины — нерастворимые белки. К склеропротеинам относятся кератины, белок кожи и соединительных тканей коллаген, белок натурального шелка фиброин.

Протеиды построены из протеинов, соединенных с молекулами другого типа (простетическими группами).

Фосфопротеиды содержат молекулы фосфорной кислоты, связанные в виде сложного эфира у гидроксильной группы аминокислоты серина. К ним относится вителлин-белок, содержащийся в яичном желтке, белок молока казеин.

Гликопротеиды содержат остатки углеводов. Они входят в состав хрящей, рогов, слюны.

Хромопротеиды содержат молекулу окрашенного вещества, обычно типа порфина. Самым важным хромопротеидом является гемоглобин — переносчик кислорода, окрашивающий красные кровяные тельца.

Нуклеопротеиды— протеины, связанные с нуклеиновыми кислотами. Они представляют собой очень важные с биологической точки зрения белки-составные части клеточных ядер. Нуклеопротеиды являются важнейшей составной частью вирусов — возбудителей многих болезней.

При соединении двух или нескольких аминокислот образуется более сложное соединение — полипептид. Полипептиды, соединяясь, образуют еще более сложные и крупные частицы и в итоге — сложную молекулу белка.

ФУНКЦИИ БЕЛКОВ

Каталитическая или ферментативная.Все химические превращения в живом организме протекают при участии катализаторов. Биологические катализаторы (ферменты) по химической природе белки, катализирующие в организме химические превращения, из которых складывается обмен веществ.

Транспортная функция. Белки транспортируют или переносят биологически значимые соединения в организме. В одних случаях транспортируемое соединение сорбируется белковой молекулой. Это защищает их от разрушения и обеспечивает перенос с током крови. Этот вид транспорта называют пассивным. С помощью мембранных белков переносятся соединения из зон с низкой концентрацией в зону с высокой. Это сопряжено с заметным потреблением энергии и называется активным транспортом.

Механохимическая функция - способность некоторых белков изменять конформацию, т.е. уменьшать длину молекулы, сокращаться. Такие белки называют сократительными (мышечные белки), поскольку они выполняют механическую работу за счет энергии химических связей.

Структурная (пластическая) функция выполняется главным образом фибриллярными белками - элементами клеточных мембран. Эти белки в составе соединительных тканей обеспечивают их прочность и эластичность: кератин шерсти и волос, коллагены сухожилий, кожи, хрящей, стенок сосудов и связывающих тканей.

Гормональная функция (функция управления) реализуется гормонами пептидной или белковой природы. Они влияют на продукцию или активность белков-ферментов и изменяют скорость катализируемых ими химических реакций, т.е. управляют обменными процессами

Защитная функция белков реализуется антителами, интерферонами, фибриногеном.

Антитела - соединения белковой природы, синтез которых индуцируется в процессе иммунного ответа - реакции организма на проникновение во внутреннюю среду посторонних белков или других антигенных компонентов (например, высокомолекулярных углеводов). Антитела, соединяясь с антигеном, образуют нерастворимый комплекс, делая антиген безопасным для организма.

Интерфероны - глюкопротеины, синтезирующиеся клеткой после проникновения в неё вируса. В отличие от антител интерфероны не взаимодействуют с антигеном, а вызывают образование внутриклеточных ферментов. Они блокируют синтез вирусных белков, препятствуя копированию вирусной информации. Это приостанавливает размножение вируса.

Фибриноген - растворимый белок плазмы, который на последней стадии процесса свёртывания крови трансформируется в фибрин - нерастворимый белок. Фибрин образует каркас тромба, ограничивающего кровопотерю.

Плазмин - белок плазмы крови, катализирующий расщепление фибрина. Это обеспечивает восстановление проходимости сосуда, закупоренного фибриновым сгустком.

Энергетическая функция белков обеспечивается за счет части аминокислот, высвобождающихся при расщеплении белка в тканях. В процессе окислительно восстановительного распада аминокислоты высвобождают энергию и синтезируют энергоноситель - АТФ (аденозинтрифосфорная кислота). На долю белка приходится около 18% энергопотребления человека.

СВОЙСТВА БЕЛКОВ

Растворимость зависит от рН раствора, природы растворителя (его диэлектрической проницаемости), концентрации электролита, т.е. от ионной силы и вида противоиона и от структуры белка. Хорошо растворимы глобулярные белки, значительно хуже - фибриллярные. При низкой ионной силе ионы повышают растворимость белка, нейтрализуя его заряженные группы. Так, эуглобулины нерастворимы в воде, но растворяются в слабых растворах поваренной соли. При высокой ионной силе ионы способствуют осаждению белков, как бы конкурируя с ними за молекулы воды - так называемое высаливание белков. Органические растворители осаждают белки, вызывая их денатурацию.

Электролитические свойства белков обусловлены тем, что в основной среде молекулы ведут себя как полианионы с отрицательным, а в кислой среде - с положительным суммарным зарядом. Это определяет способность белков мигрировать в электрическом поле к аноду или катоду, в зависимости от суммарного заряда. На этом свойстве белков основан анализ их смеси - электрофорез.
Денатурация белка - следствие разрыва слабых связей, ведущего к разрушению вторичной и третичной структур. Молекула денатурированного белка неупорядочена - она приобретает характер случайного (статистического) клубка. Как правило, денатурация белка необратима, но в некоторых случаях после устранения денатурирующего агента может произойти ренатурация - восстановление вторичной и третичной структур и свойств.

Денатурирующие агенты: высокие температуры (разрыв водородных и гидрофобных связей), кислоты и основания (нарушение электростатических связей), органические растворители (нарушение преимущественно гидрофобных связей).

К денатурирующим агентам относятся также детергенты, соли Тяжелых металлов, ультрафиолет и другие виды излучений.

Денатурация не нарушает ковалентных связей, но повышает их доступность для других факторов, в частности для энзимов.

 

Денатурация – это процесс нарушения высших уровней организации белковой молекулы (вторичного, третичного, четвертичного) под действием различных факторов.

При этом полипептидная цепь разворачивается и находится в растворе в развернутом виде или в виде беспорядочного клубка.

При денатурации утрачивается гидратная оболочка и белок выпадает в осадок и при этом утрачивает нативные свойства.

Денатурацию вызывают физические факторы: температура, давление, механические воздействия, ультразвуковые и ионизирующие излучения; химические факторы: кислоты, щелочи, органические растворители, алкалоиды, соли тяжелых металлов.

Различают 2 вида денатурации:

Обратимая денатурация – ренатурация или ренактивация – это процесс, при котором денатурированный белок, после удаления денатурирующих веществ вновь самоорганизуется в исходную структуру с восстановлением биологической активности.

необратимая денатурация – это процесс, при котором биологическая активность не восстанавливается после удаления денатурирующих агентов.

Свойства денатурированных белков.

1. Увеличение числа реактивных или функциональных групп по сравнению с нативной молекулой белка (это группы COOH, NH2, SH, OH, группы боковых радикалов аминокислот).

2. Уменьшение растворимости и осаждение белка (связано с потерей гидратной оболочки), развертыванием молекулы белка, с «обнаружением» гидрофобных радикалов и нейтрализации зарядов полярных групп.

3. Изменение конфигурации молекулы белка.

4. Потеря биологической активности, вызванная нарушением нативной структуры.

5. Более легкое расщепление протеолитическими ферментами по сравнению с нативным белком – переход компактной нативной структуры в развернутую рыхлую форму облегчает доступ ферментов к пептидным связям белка, которые они разрушают.

Ферментные методы гидролиза основаны на избирательности действия протеолитических ферментов расщепляющих пептидные связи между определенными аминокислотами.

Пепсин расщепляет связи, образованные остатками фенилаланина, тирозина и глутаминовой кислоты.

Трипсин расщепляет связи между аргинином и лизином.

Химотрипсин гидролизует связи триптофана, тирозина и фенилаланина.

 

Гидрофобные взаимодействия,а также ионные и водородные связи относятся к числу слабых,тк энергия их лишь ненамного превосходит энергию теплового движения атомов при комнатной температуре(т е уже при данной температуре возможен разрыв связей ).

Поддержание характерной для белка конформации возможно благодаря возникновению множества слабых связей между различными участками полипептидной цепи.

Однако,белки состоят из огромного числа атомов ,находящихся в посттояном (броуновском) движении,что приводит к енбольшим перемещениям отдельных участков полипептидной цепи ,которые обычно не нарушают общую структуру белка и его функции.Следовательно,белки обладают конформационной лабильностью – склонностью к небольшим изменениям конформации за счет разрыва одних и образования других слабых связей.Конформация белка может меняться при изменении химических и физических средств среды,а также при взаимодействии белка с другими молекулами.При этом происходит изменение пространственной структуры не только участка,контактирующего с другой молекулой,но и конформации белка в целом.Конформационные изменения играют роль огромную в функционировании белков в клетке живой.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.