Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Линеаризация уравнения динамики



 

Математическим аппаратом исследования САУ являются дифференциальные уравнения, которые описывают движение системы и являются уравнениями динамики. Из уравнений динамики, положив все производные равными нулю, можно получить уравнения статики, которые описывают поведение системы в установившемся режиме.

Дифференциальные уравнения САУ и ее элементов, составленные в соответствии с физическими законами их функционирования и факторами, от которых зависят переменные уравнений, практически всегда являются нелинейными. Дифференциальные уравнения САУ, записанные в виде системы уравнений или одного дифференциального уравнения высокого порядка представляют собой математическую модель системы. Математическая модель является основой для анализа свойств системы и степени их соответствия поставленным требованиям. Итак, исходная математическая модель САУ является нелинейной. Отсутствие однозначных аналитических методов решения нелинейных дифференциальных уравнений не позволяет создать какие-либо общие эффективные методы анализа и синтеза САУ. Именно это и послужило причиной развития идеи линеаризации, т.е. замены исходной нелинейной модели линейной, близкой по решению к исходной модели в определенном диапазоне изменения начальных условий и параметров. Линеаризация проводится по методу малого отклонения, который основан на разложении нелинейных функций в ряд Тейлора.

Рассмотрим сначала геометрическое обоснование линеаризации.

 

В нормально функционирующей САУ значение регулируемой и всех промежуточных величин незначительно отличается от требуемых. В пределах малых отклонений все нелинейные зависимости между величинами, входящими уравнение динамики, могут быть приближенно представлены отрезками прямых линий. Например, нелинейная статическая характеристика звена на участке АВ (рис.26) может быть представлена отрезком касательной в точке номинального режима А"В". Начало координат переносится в точку О’, и в уравнениях записываются не абсолютные значения величин y,u,f, а их отклонения от номинальных значений: y = y - yн, u = u - uн, f = f - fн. Это позволяет получить нулевые начальные условия, если считать, что при t 0 система находилась в номинальном режиме в состоянии покоя.

Математическое обоснование линеаризации состоит в том, что если известно значение f(a) какой - либо функции f(x) в любой точке x = a, а также значения производных от этой функции в данной точкеf’(a), f”(a), ..., f(n)(a), то в любой другой достаточно близкой точке x + x значение функции можно определить, разложив ее в окрестности точки a в ряд Тейлора:

Аналогично можно разложить и функцию нескольких переменных. Для простоты возьмем упрощенный, но наиболее характерный вариант уравнения динамики САУ: F(y,y',y",u,u') = f. Здесь производные по времени u',y',y" также являются переменными. В точке, близкой к номинальному режиму: f = fн + fи F = Fн + F. Разложим функцию F в ряд Тейлора в окрестности точки номинального режима, отбрасывая члены ряда высоких порядков малости:

.

В номинальном режиме, когда все отклонения и их производные по времени равны нулю, получаем частное решение уравнения: Fн = fн. Учитывая это и вводя обозначения получим:

ao y” + a1 y’ + a2 y = bo u’ + b1 u + co f.

Отбрасывая все знаки , получим:

aoy” + a1y’ + a2y = bou’ + b1u + cof.

В более общем случае:

aoy(n) + a1y(n-1) + ... + an - 1y’ + any = bou(m) + ... + bm - 1u’ + bmu + cof.

При этом всегда нужно помнить, что в данном уравнении используются не абсолютные значения величин y, u, fих производных по времени, а отклонения этих величин от номинальных значений. Поэтому полученное уравнение будем называть уравнением в отклонениях.

К линеаризованной САУ можно применить принцип суперпозиции: реакция системы на несколько одновременно действующих входных воздействий равна сумме реакций на каждое воздействие в отдельности. Это позволяет звено с двумя входами u и f разложить на два звена, каждое из которых имеет один вход и один выход (рис.27). Поэтому в дальнейшем мы ограничимся изучением поведения систем и звеньев с одним входом, уравнение динамики которых имеет вид:

aoy(n) + a1y(n-1) + ... + an - 1y’ + any = bou(m) + ... + bm - 1u’ + bmu.

 

Это уравнение описывает САУ в динамическом режиме лишь приближенно с той точностью, которую дает линеаризация. Однако следует помнить, что линеаризация возможна только при достаточно малых отклонениях величин и при отсутствии разрывов в функции F в окрестностях интересующей нас точки, которые могут быть созданы различными выключателями, реле и т.п.

Сложность решения дифференциальных уравнений высокого порядка без применения вычислительной техники и невозможность на основании численных решений создать общие методы анализа и синтеза систем привели к широкому использованию методов, связанных с применением математического аппарата преобразований Лапласа и Фурье. Эти методы и составили сущность так называемой классической теории автоматического управления.

Необходимо отметить, что существуют нелинейные функции, которые невозможно линеаризовать по методу малого отклонения и, в этих случаях, используют специальные методы, разработанные для исследования нелинейных систем.

 

Передаточная функция

 

Понятие передаточной функции системы является основополагающим в классической теории автоматического управления (ТАУ), к изучению основ которой мы и приступаем.

Определение передаточной функции связано с преобразование Лапласа и поэтому вначале приведем некоторые основные сведения из этого преобразования.

При использовании преобразования Лапласа некоторой функции времени x(t)ставится в однозначное соответствие функция X(р), где р- оператор Лапласа. Функция времени x(t) называется оригиналом, а функция X(р) ее изображением. Изображение и оригинал связаны соотношением

Приведем некоторые теоремы преобразования Лапласа, которые будут использованы при изложении курса.

1. Теорема линейности. Для любых действительных или комплексных

(1.3)

 

Знак Þ означает соответствие изображения оригиналу.

2. Теорема запаздывания. Для любого постоянного t > 0

(1.4)

3. Теорема дифференцирования оригинала. Если то

(1.5)

Применив эту теорему к производным высших порядков, получим

(1.6)

При нулевых начальных условиях выражение (1.6) упрощается

(1.7)

4. Теорема интегрирования оригинала. Если и

то

(1.8)

5. Теорема о начальном значении оригинала.

(1.9)

6. Теорема о конечном значении оригинала.

(1.10)

Перейдем к определению передаточной функции. Пусть система или какое-либо звено ее описываются дифференциальным уравнением вида (1.2). Полагая начальные условия нулевыми, перейдем в этом уравнении к изображениям по Лапласу. В соответствии с теоремой 3 получим

.

Вынесем в полученном выражении за скобки изображения переменной и входного воздействия и сделаем обозначения

С учетом этих обозначений исходное дифференциальное уравнение в изображениях по Лапласу получит вид

(1.11)

Определим теперь зависимость выходной величины от входного воздействия

(1.12)

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.