Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Пример решения задания 1



ЗАДАНИЯ К КОНТРОЛЬНОЙ РАБОТЕ ПО ДИСЦИПЛИНЕ

«ЭЛЕКТРОТЕХНИЧЕСКОЕ И КОНСТРУКЦИОННОЕ МАТЕРИАЛОВЕДЕНИЕ»

И МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ЕЕ ВЫПОЛНЕНИЯ

для студентов всех форм обучения

направления подготовки 051000.62 Профессиональное обучение (по отраслям)

профиля подготовки «Энергетика»

профилизаций «Энергохозяйство предприятий, организаций, учреждений и энергосберегающие технологии», «Электропривод и автоматика»

 

Екатеринбург 2012


Задания к контрольной работе по дисциплине «Электротехническое и конструкционное материаловедение»и методические указания для ее выполнения. Екатеринбург, ФГАОУ ВПО «Российский государственный профессионально-педагогический университет», 2012. 27 с.

 

 

Составитель ст. преподаватель

кафедры автоматизированных

систем электроснабжения И.М. Морозова

 

 

Одобрены на заседании кафедры автоматизированных систем электроснабжения РГППУ. Протокол от 30.08.2012, № 1.

 

Зав. кафедрой

автоматизированных

систем электроснабжения С.В. Федорова

 

 

Рекомендованы к печати методической комиссией Института электроэнергетики и информатики РГППУ. Протокол от 10.09.2012, № 1.

 

Зам. председателя методической

комиссии ЭлИн РГППУ А.А. Карпов

 

 

© ФГАОУ ВПО «Российский государственный профессионально-педагогический университет», 2012

© И.М. Морозова


Цели и задачи контрольной работы

 

Основная цель контрольной работы - систематизация, расширение и закрепление теоретических знаний, умений и практических навыков студентов по специальности при самостоятельном выборе электротехнических материалов. В процессе выполнения контрольных заданий у студентов должно сложиться ясное представление об основных свойствах и характеристиках ЭТ и КМ и физических процессах, происходящих в материалах при внесении их в электрическое поле.

В задачи контрольной работы входит:

● приобретение практических навыков расчета свойств ЭТМ;

● изучение литературных источников, развитие навыков использования справочной литературы;

● правильное представление об основных свойствах и характеристиках ЭТМ.

 

 

Основные требования к содержанию контрольной работы

Контрольная работа должна быть оформлена на листах формата А4 и включать в себя:

● титульный лист;

● задание на контрольную работу;

● основные теоретические положения, расчётные формулы, расчёты, необходимые рисунки и характеристики;

● список используемой литературы.

 

 

Методические указания к выполнению контрольной работы по электротехническим материалам.

Контрольная работа включает в себя 3 задания. Первое задание на тему «Электропроводность. Проводниковые, полупроводящие и изоляционные материалы», второе задание «Диэлектрическая проницаемость. Диэлектрики» и наконец, третье задание «Магнитные свойства материалов. Магнитные материалы».

Вариант выбираете по списку экзаменационной ведомости.

Так как вы прорешивали точно такие же задачи в самостоятельных работах, затруднений в выполнении этой контрольной работы у вас не должно быть.

При выполнении контрольной работы допускается пользоваться литературой, приведенной в рабочей программе и в данных методических указаниях.

Пример решения задания 1.

Проверьте, сработает ли устройство защитного отключения (УЗО) при следующих условиях: Шахтный одножильный кабель диаметром 12 мм длиной 500 м, сечением жилы 35 мм2, с изоляцией из резины типа РТИ-1 попал в воду. Напряжение на жиле – 380 В. УЗО срабатывает, если утечка через изоляцию превысит 10 мА.

Решение:

Для того, чтобы сработало УЗО необходимо, чтобы сопротивление изоляции провода было бы не более такого, при котором ток утечки был бы равен 10 мА. Найдём это сопротивление:

Rиз. ≤ 380 В / 0,01 А=38000 Ом.

Поскольку ток через изоляцию стекает с жилы, поле тока можно принять радиально-цилиндрическим, и сопротивление изоляции будет равно:

Неизвестным параметром в этом выражении является удельное сопротивление резины – ρрезины.

Рассчитаем удельное электрическое сопротивление электрической изоляции из резины РТИ-1, при котором может сработать УЗО. Для этого вначале определим радиус токопроводящей жилы через площадь её сечения - S:

.

Радиус внешней эквипотенциальной поверхности коаксиальной системы можно принять равным 6 мм, поскольку кабель находится в воде, а его диаметр равен 12 мм. Рассчитываем удельное электрическое сопротивление:

 

Таким образом, УЗО может сработать, если удельное сопротивление в результате увлажнения снизится до 2∙108 Ом∙м.

Вывод: Сравнивания полученное значение со значениями в таблице п. 3, видим, что удельное сопротивление резины РТИ-1 даже после 14-и дней увлажнения при любой температуре имеет значения на 4 порядка выше, чем полученное в нашем расчёте. Таким образом, при попадании резинового кабеля в воду срабатывания УЗО не произойдёт. То есть условия электробезопасности при эксплуатации резинового кабеля в воде соблюдаются. По-видимому, отключение УЗО может произойти, если в изоляции будут дополнительные повреждения, например, трещины от старения.

Пример решения задания 2:

Определите напряжённость поля в воздушном включении, которое находится в изоляции одножильного кабеля с номинальным напряжением 10 кВ. Напряжение на жиле составляет 6 кВ. Жила диаметром 10 мм изолирована поликарбонатной пленкой "макрофоль" типа SN и имеет толщину изоляции 3 мм. При намотке пленки на жилу на поверхности жилы образовалось микроскопическое воздушное включение.

Решение:

Если пренебречь искажением поля, которое вносит небольшое воздушное включение, то напряжённость поля на поверхности провода, создающего радиально-цилиндрическое поле, равна:

Здесь r1 и r2 - соответственно радиусы жилы и оболочки, U - напряжение на жиле.

 

Рисунок 22 – Радиально-цилиндрическое поле

Напряжённость поля в воздушном включении по отношению к напряженности поля в изоляционной плёнке определяется обратным отношением диэлектрических проницаемостей материала воздуха eв и изоляции eп:

Из этого выражения видно, что для выполнения задания необходимо знать значения диэлектрических проницаемостей поликарбонатной пленки eп и воздуха eв.

Воздух является газообразным диэлектриком. Его электрическая прочность при расстоянии между электродами в 1 см и атмосферном давлении равна примерно 3 МВ/м. Это на порядок меньше, чем у твердых диэлектриков. Диэлектрическая проницаемость воздуха при 200 С и давлении 101325 Па (760 мм рт.ст.) eв = 1,00059. При повышении давления с 0,1 до 10 МПа диэлектрическая проницаемость воздуха увеличивается 1,00058 до 1,0549. Кроме того, диэлектрическая проницаемость воздуха увеличивается с повышением влажности из-за большой диэлектрической проницаемости водяных паров.

Поликарбонатная пленка (ПК) изготавливается толщиной 0,002 - 0,8 мм из поли-6-диоксидифенил-2,2-пропана без пластификаторов фирмой Bayer (ФРГ) под названием макрофоль. Плёнки бывают различных типов. Плёнки всех типов с одной стороны имеют шероховатую поверхность. Наилучшими электрическими и механическими свойствами обладают конденсаторные пленки KG и SKG.

Принимаем, что воздух в пузырьке находится при нормальном давлении. Следовательно, eв = 1,00059. Из п. 3 eп = 3,0.

Вывод: Напряжённость поля в воздушном пузырьке составит 7,655 МВ/м, что выше электрической прочности воздуха - 3 МВ/м. Это означает, что воздушный пузырёк будет пробиваться при напряжении на жиле выше, чем 3,8 кВ.

Пример решения задания 3:

Оцените потери в стали 1521 при частоте 50 Гц и напряженности внешнего магнитного поля 2500 А/м и сравните эти потери с потерями в стали 1511 при тех же условиях.

В обозначении марок цифры означают:

Первая – класс по структурному состоянию и виду прокатки:

1 – горячекатаная, изотропная;

2 – холоднокатаная изотропная;

3 – холоднокатаная анизотропная с ребровой текстурой;

5 - холоднокатаная анизотропная с плоской кубической текстурой.

Вторая – содержание кремния:

0 – до 0,4% (нелегированная);

1 – (0,4…0,8) %;

2 - (0,8…1,8) %;

3 - (1,8…2,8) %;

4 - (2,8…3,8) %; удельные потери нормируются при магнитной индукции В=1,5 Тл и частоте f = 50 Гц;

5 - (3,8…4,8) %.

Третья – группу по основной нормируемой характеристике:

0 – удельные потери при магнитной индукции В=1,7 Тл и частоте f = 50 Гц;

1 - удельные потери при магнитной индукции В=1,5 Тл и частоте f = 50 Гц;

2 - удельные потери при магнитной индукции В=1,0 Тл и частоте f = 400 Гц;

4 -удельные потери при магнитной индукции В=0,5 Тл и частоте f = 3000 Гц;

6 – магнитная индукция в слабых полях при напряженности поля Н=0,4 А/м;

7 - магнитная индукция в средних полях при напряженности поля Н=10 А/м.

Четвёртая - порядковый номер типа стали.

Таким образом, заданные электротехнические стали характеризуются следующим образом:

1511 – горячекатаная изотропная сталь, с содержанием кремния - (3,8…4,8) %, удельные потери нормируются при магнитной индукции В=1,5 Тл и частоте f = 50 Гц, тип стали – 1.

1521 –эта сталь отличается от предыдущей только тем, что удельные потери нормируются при магнитной индукции В=1,0 Тл и частоте f = 400 Гц,

Эти стали поставляются в виде листов толщиной 0,1…1,0 мм шириной 500…1000 мм и длиной 600…2000 мм.

В соответствии с маркой стали магнитные потери для стали 1521 нормируются при магнитной индукции В=1,0 Тл и частоте f = 400 Гц и составляют 19,5 Вт/кг (3,табл. 2.5, табл.2.6) из (7) в списке литературы. При напряжённости внешнего магнитного поля 2500 А/м индукция в стали 1521 составляет 1,44 Тл. Следовательно, нормированные потери необходимо привести к условиям задания. Поскольку сталь магнитомягкая, то приближённо можно считать, что основная доля потерь – это потери на вихревые токи. Поэтому воспользуемся формулой потери на вихревые токи.

Рнорм= β Bнорм 2 ×fнорм 2.

искомые потери: Рх = β B1,44 2 ×f50 2.

Для стали 1521:

Для стали 1511 потери нормируются при индукции 1,5 Тл. Поскольку у этой стали при напряжённости поля 2500 А индукция составляет 1,44 Тл, то нормируемые потери увеличатся в 1,52/1,442 = 1,085 раза, то есть составят 3Вт/кг×1,085=3,255 Вт/кг.

Вывод: Если сталь 1521, предназначенную для работы при частоте 400 Гц применять в условиях, аналогичных применению стали 1511, то есть при частоте 50 Гц, то магнитные потери в стали 1521 будут меньше, чем в стали 1511.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.