Химические реакции очень сильно отличаются по скорости протекания. Например, взаимодействие водорода с хлором на свету происходит мгновенно (взрыв), а коррозия металлов длится годами. Скорость и механизм химических реакций изучает химическая кинетика.
В химической кинетике реакции подразделяются на простые и сложные. Простые реакции протекают без образования промежуточных соединений (в одну стадию), а сложные – с образованием промежуточных продуктов (в несколько стадий). Каждая стадия сложной реакции может рассматриваться как простая реакция. Среди последовательных стадий сложной реакции всегда имеется одна стадия, которая ограничивает скорость протекания всей реакции в целом. Она называется лимитирующей стадией сложной химической реакции.
Скорость реакции зависит от концентрации взаимодействующих веществ, эта зависимость устанавливается законом действующих масс для скорости реакций. Согласно этому закону, для реакции, протекающей по уравнению
aA + bB = Продукты
скорость реакции определяется выражением
в котором k – константа скорости реакции; СA, и СB – молярные концентрации реагентов; показатели степени n1 и n2 называются частными кинетическими порядками реакции по веществам А и В, соответственно.
Сумма частных порядков реакции n1 + n2 = p представляет собой общий кинетический порядок реакции. Существуют реакции нулевого (p = 0), первого (р = 1), второго (р = 2) и третьего порядка (р = 3).
Для простых реакций частные порядки совпадают с коэффициентами перед реагентами в химическом уравнении реакции, а общий порядок равен сумме коэффициентов в левой части уравнения реакции.
Для сложной реакции общий кинетический порядок не совпадает с коэффициентами перед реагентами, но совпадает с порядком её лимитирующей стадии. Иногда порядок сложной реакции выражается не целым, а дробным числом.
Примечание. Для некоторых сложных реакций кинетический порядок совпадает с коэффициентами перед реагентами; такие реакции в химической кинетике называются формально простыми.
Кинетический порядок реакции определяют экспериментально обычно графическим методом. В реакциях нулевого порядка скорость реакции остается постоянной. График экспериментальных данных для такой реакции в координатах V(скорость) – С(концентрация) представляет прямую линию, параллельную оси абсцисс (рис. 1а). В реакциях первого порядка скорость реакции увеличивается пропорционально концентрации (рис. 1б). В реакциях, порядок которых больше единицы, между V и С наблюдается экспоненциальная зависимость (рис. 1в).
Для того чтобы участвовать в реакции, молекулам необходима избыточная энергия по сравнению со средней энергией молекул при данной температуре. Эта избыточная энергия называется энергией активации реакции; она обозначается Еа и измеряется в кДж/моль. Константа скорости реакции и энергия активации связаны уравнением Аррениуса:
Энергия активации Еа и множитель ko (его называют предэкспоненциальным множителем) являются постоянными величинами, характеризующими данную реакцию; в отличие от константы скорости k, они не зависят от температуры.
Энергию активации можно найти, если измерить константу скорости реакции при двух температурах Т1 и Т2. При вычислении энергии активации потребуются не абсолютные значения константы скорости, а их отношение (k2 : k1). Это то же самое, что отношение скоростей реакции при двух температурах (V2 : V1) или отношение времени протекания реакции при Т1 к её времени при Т2 (τ1 : τ2), так как все эти отношения равны между собой:
k2 : k1 = V2 : V1 = τ1 : τ2.
Формулу для вычисления энергии активации можно получить, если записать уравнение Аррениуса два раза – для температур Т1 и Т2:
разделить второе уравнение на первое, прологарифмировать полученное уравнение. После преобразований получается формула: