Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Запоминающие устройства



Преднозначены для хранения информации и передачи ее для дальнейшего использования. Основным элементом явл ячейка памяти.

Ячейка памяти состоит из запоминающих элементов, котороыесохраняют один вид информации.

Необходимые ячейки объеден в блоки памяти.

Емкость – произв. разряда на сумму емкости ячеек памяти.

Быстродействие – время, которое необходимо для записи и считывания информации.

Схема построения памяти

 

 

Сверхбыстрое оперативное запоминающее устройство

ОЗУ - оперативные запоминающие устройства

СОЗУ Статическое оперативное запоминающие устройство

ВЗУ - внешнее запоминающее устройство

 

 

27) Компенсационные стабилизаторы напряжения обладают более высоким коэффициентом стабилизации и меньшим выходным сопротивлением по сравнению с параметрическими. Их принцип работы основан на том, что изменение напряжения на нагрузке (под действием изменения Uвх или Iн) передается на специально вводимый в схему регулирующий элемент (РЭ), препятствующий изменению напряжения Uн

блок Д и ИОН=БС(блок сравнения) СУ-усилитель

Схема стабилизатора напряжения с использованием операционного усилителя.

Работа основана на сравнения напряжения выходного с напряжением на стабилизаторе. При изменении которого вызывает тока в базе и коллектора транзистора что управляет работой операционного усилителя, кот. Может увеличивать или уменьшать отдаваемую нагрузку и энергию.

Регулирование сопротивления имеет возможность коллектировать требуемое сопротивление.

Схема стабилизатора напряжения на биполярном транзисторе.

и - сопротивление обеспечивающие необходимые токи для срабатывания транзистора VT1

Компенсационные стабилизаторы тока

Состоят из тех же блоков что и стабилизатор напряжения. Транзистор регулирует ток своим выводами элект, коллектор вкл. последовательно и служит регулирующим элементом тока поступающего на нагрузку.

 

 


Регистры.

Регистры - это устройства, выполняющие функции приема, хранения и передачи информации в виде т-разрядного двоичного кода.

По количеству линий передач: однофазные, парофазные; по системе синхронизации однотактные, двухтактные, многотактные;

Основным классификационным признаком регистров являются способ записи двоичного кода в регистр и его выдача, т.е. различают параллельные, последовательные (сдвигающие) и параллельно-последовательные регистры. Параллельный регистр выполняет операцию записи параллельным кодом. Последовательный регистр осуществляет запись последовательным кодом, начиная с младшего или старшего разряда, путем последовательного сдвига кода тактирующими импульсами. Параллельно-последовательные регистры имеют входы как для параллельной, так и для последовательной записи кода числа. Кроме того, сдвигающие регистры делятся на одно- и двунаправленные (реверсивные). Однонаправленные регистры осуществляют сдвиг кода влево или вправо, а двунаправленные - и влево, и вправо.

Принцип построения простейшего параллельного т-разрядного регистра

В параллельном регистре цифры кода подаются на D-вход соответствующих триггеров. Запись осуществляется при подаче логической единицы на вход С. Код снимается с выходов Q. Параллельные регистры служат только для хранения информации в виде параллельного двоичного кода и для преобразования прямого кода в обратный и наоборот.

Последовательные регистры, помимо хранения информации, способны преобразовывать последовательный код в параллельный и наоборот. При построении последовательных регистров триггеры соединяются последовательно путем подключения выхода Q i-го триггера ко входу D i-го триггера, как это показано на рис. 209.

Реверсивные регистры должны содержать логические схемы управления, обеспечивающие прохождение сигнала с выхода Q i-го триггера на вход D i-1-го триггера при сдвиге кода вправо и прохождение этого же сигнала на вход D i+1-го при реализации сдвига кода влево. Схема построения реверсивного регистра приведена на рис. 210.

 


Микропроцессоры.

По числу больших интегральных схем (БИС) в микропроцессорном комплекте различают микропроцессоры однокристальные, многокристальные и многокристальные секционные.

Однокристальные микропроцессоры получаются при реализации всех аппаратных средств процессора в виде одной БИС или СБИС (сверхбольшой интегральной схемы). По мере увеличения степени интеграции элементов в кристалле и числа выводов корпуса параметры однокристальных микропроцессоров улучшаются. Однако возможности однокристальных микропроцессоров ограничены аппаратными ресурсами кристалла и корпуса. Для получения многокристального микропроцессора необходимо провести разбиение его логической структуры на функционально законченные части и реализовать их в виде БИС (СБИС). Функциональная законченность БИС многокристального микропроцессора означает, что его части выполняют заранее определенные функции и могут работать автономно.

Многокристальные секционные микропроцессоры получаются в том случае, когда в виде БИС реализуются части (секции) логической структуры процессора при функциональном разбиении ее вертикальными плоскостями (рис. 1,б). Для построения многоразрядных микропроцессоров при параллельном включении секций БИС в них добавляются средства "стыковки".

По назначению различают универсальные и специализированные микропроцессоры.

Универсальные микропроцессоры могут быть применены для решения широкого круга разнообразных задач. При этом их эффективная производительность слабо зависит от проблемной специфики решаемых задач. Специализация МП, т.е. его проблемная ориентация на ускоренное выполнение определенных функций позволяет резко увеличить эффективную производительность при решении только определенных задач.

Среди специализированных микропроцессоров можно выделить различные микроконтроллеры, ориентированные на выполнение сложных последовательностей логических операций, математические МП, предназначенные для повышения производительности при выполнении арифметических операций за счет, например, матричных методов их выполнения, МП для обработки данных в различных областях применений и т. д. С помощью специализированных МП можно эффективно решать новые сложные задачи параллельной обработки данных. Например, конволюция позволяет осуществить более сложную математическую обработку сигналов, чем широко используемые методы корреляции. Последние в основном сводятся к сравнению всего двух серий данных: входных, передаваемых формой сигнала, и фиксированных опорных и к определению их подобия. Конволюция дает возможность в реальном масштабе времени находить соответствие для сигналов изменяющейся формы путем сравнения их с различными эталонными сигналами, что, например, может позволить эффективно выделить полезный сигнал на фоне шума

 


 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.