Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Классификация тиристоров



По проводимости и количеству выводов

тиристор диодный (доп. название «динистор») - тиристор, имеющий два вывода:

тиристор диодный, не проводящий в обратном направлении;

тиристор диодный, проводящий в обратном направлении;

тиристор диодный симметричный (доп. название «диак»);

тиристор триодный (доп. название «тринистор») - тиристор, имеющий три вывода:

тиристор триодный, не проводящий в обратном направлении ;

тиристор триодный, проводящий в обратном направлении;

тиристор триодный симметричный

тиристор триодный асимметричный;

запираемый тиристор (доп. название «тиристор триодный выключаемый»).

Динистор

Принципиальных различий между динистором и тринистором нет, однако если открытие динистора происходит при достижении между выводами анода и катода определённого напряжения, зависящего от типа данного динистора, то в тринисторе напряжение открытия может быть специально снижено, путём подачи импульса тока определённой длительности и величины на его управляющий электрод при положительной разности потенциалов между анодом и катодом, и конструктивно тринистор отличается только наличием управляющего электрода. Тринисторы являются наиболее распространёнными приборами из «тиристорного» семейства.

На рисунке ниже вольт-амперная характеристика (англ. Current-voltage characteristics) импортного динистора DB3. Отметим, что данный динистор является симметричным и его можно впаивать в схему без соблюдения цоколёвки. Работать он будет в любом случае, вот только напряжение включения (пробоя) может чуть отличаться (до 3 вольт).

Вольт-амперная характеристика симметричного динистора

На ВАХ динистора DB3 наглядно видно, что он симметричный. Обе ветви характеристики, верхняя и нижняя, одинаковы. Это свидетельствует о том, что работа динистора DB3 не зависит от полярности приложенного напряжения.

График имеет три области, каждая из которых показывает режим работы динистора при определённых условиях.

· Красный участок на графике показывает закрытое состояние динистора. Ток через него не течёт. При этом напряжение, приложенное к электродам динистора, меньше напряжения включения VBO

· Синий участок показывает момент открытия динистора после того, как напряжение на его выводах достигло напряжения включения (VBO или Uвкл.). При этом динистор начинает открываться и через него начинает протекать ток. Далее процесс стабилизируется и динистор переходит в следующее состояние.

· Зелёный участок показывает открытое состояние динистора. При этом ток, который протекает через динистор ограничен только максимальным током Imax, который указывается в описании на конкретный тип динистора. Падение напряжения на открытом динисторе невелико и колеблется в районе 1 – 2 вольт.

14. Симистop (симметричный триодный тиристор) — полупроводниковый прибор, являющийся разновидностью тиристоров и используемый для коммутации в цепях переменного тока. В электронике часто рассматривается как управляемый выключатель (ключ). В отличие от тиристора, имеющего катод и анод, основные (силовые) выводы симистора называть катодом или анодом некорректно, так как в силу структуры симистора они являются тем и другим одновременно. Однако по способу включения относительно управляющего электрода основные выводы симистора различаются, причём имеет место их аналогия с катодом и анодом тиристора.

В результате этого их вольтамперная характеристика симметрична, что отражено на рис. 7.4.

 

Таким образом, на вольтамперной характеристике каждого симистора присутствуют два участка отрицательного дифференциального сопротивления.

Структура симистора содержит пять слоёв, что отражено на рис. 7.5.



К управляющему электроду, который отведён от зоны n3, подсоединим вывод отрицательного напряжения, полученного от источника питания, относительно вывода от зон p2, n4, в результате чего электроны из зоны n3 инжектируют в зону p2. Кроме того, приложим напряжение от источника питания положительным полюсом к зонам p1, n1, а отрицательным полюсом к зонам p2, n4. Переходы П1 и П4 открыты, и играют роль эмиттерных переходов, а переход П2 закрыт и исполняет обязанности коллекторного перехода, и через симистор по выводам анод-катод протекает ток.

Теперь поменяем полярность и приложим напряжение отрицательным полюсом к зонам p1, n1, а положительным полюсом к зонам p2, n4. Переходы П1 и П4 закрыты, и переход П1 выполняет функции коллекторного перехода, а переход П2 открыт и служит коллекторным переходом, и через симистор и в этом случае по выводам анод-катод течёт ток.

Симисторы нашли широкое применение в устройствах регулирования скорости вращения электродвигателей, в системах освещения, в электронагревателях, в преобразовательных установках.

15. Электровакуумный диод — вакуумная двухэлектродная электронная лампа. Катод диода нагревается до температур, при которых возникает термоэлектронная эмиссия. При подаче на анод отрицательного относительно катода напряжения все эмитированные катодом электроны возвращаются на катод, при подаче на анод положительного напряжения часть эмитированных электронов устремляется к аноду, формируя его ток. Таким образом, диод выпрямляет приложенное к нему напряжение. Это свойство диода используется для выпрямления переменного тока и детектирования сигналов высокой частоты. Практический частотный диапазон традиционного вакуумного диода ограничен частотами до 500 МГц.

Устройство

Электровакуумный диод представляет собой стеклянный или металлический баллон, из которого откачан воздух и внутри которого находятся катод и анод. От этих электродов сквозь стенки баллона проходят выводы. Если баллон стеклянный, то выводы впаиваются в стекло. Если же баллон металлический, то выводы выходят через стеклянные или керамические бусинки, впаянные в металл.

Анод имеет один вывод. В зависимости от конструкции выделяют катоды прямого накала и подогревные катоды. Катод прямого накала греется за счёт проходящего через него тока, и имеет два вывода. Для подогревного катода (который греется за счет близко расположенной нити накала) делают два вывода от подогревающей нити и один от, собственно, катода.

В практических конструкциях диодов анод обычно имеет форму цилиндра или коробки без двух стенок (часто с закругленными углами), окружающей катод. В последнем случае нить имеет вид латинской буквы V или W. При таких конструкциях анодов все излучаемые катодами электроны с одинаковой силой притягиваются анодами.

Для уменьшения нагрева анода его часто снабжают рёбрами или крылышками, которые способствуют лучшему отводу от него тепла.

Принцип работы

При разогреве катода электроны начнут покидать его поверхность за счёт термоэлектронной эмиссии. Покинувшие поверхность электроны будут препятствовать вылету других электронов, в результате вокруг катода образуется своего рода облако электронов. Часть электронов с наименьшими скоростями из облака падает обратно на катод. При заданной температуре катода облако стабилизируется: на катод падает столько же электронов, сколько из него вылетает.

При подаче на катод отрицательного электрического потенциала, а на анод — положительного возникает электрическое поле, которое заставляет электроны двигаться от катода к аноду. Тем самым в цепи появляется ток.

Если же на катод подан «+», а на анод «-» (обратное включение), электрическое поле препятствует движению электронов, которые покидают катод и ток не течёт.

Вольт-амперная характеристикаэлектровакуумного диода имеет 3 участка:

1.Нелинейный участок. На начальном участке ВАХ ток медленно возрастает при увеличении напряжения на аноде, что объясняется противодействием полю анода объёмного отрицательного заряда электронного облака. По сравнению с током насыщения, анодный ток очень мал. Его зависимость от напряжения растет экспоненциально, что обуславливается разбросом начальных скоростей электронов. Для полного прекращения анодного тока необходимо приложить некоторое анодное напряжение меньше нуля, называемое запирающим.

2.Участок закона «трех вторых». Зависимость анодного тока от напряжения характеризуется законом Ленгмюра-Чайльда-Богуславского (так же называемым законом «трех вторых»).

3.Участок насыщения. При дальнейшем увеличении напряжения на аноде рост тока замедляется, а затем полностью прекращается, так как все электроны, вылетающие из катода, достигают анода. Дальнейшее увеличение анодного тока при данной величине накала невозможно, поскольку для этого нужны дополнительные электроны, а их взять негде, так как вся эмиссия катода исчерпана. Установившейся в этом режиме анодный ток называется током насыщения. Этот участок описывается законом Ричардсона-Дешмана.

ВАХ анода зависит от напряжения накала — чем больше накал, тем больше крутизна ВАХ и тем больше ток насыщения. Однако увеличение напряжения накала приводит к уменьшению срока службы лампы.

Электровакуумные диоды маркируются по такому принципу, как и остальные лампы:

1. Первое число обозначает напряжение накала, округлённое до целого.

2. Второй символ обозначает тип электровакуумного прибора. Для диодов:

§ Д — одинарный диод.

§ Ц — кенотрон (выпрямительный диод)

§ X — двойной диод, то есть содержащий два диода в одном корпусе с общим накалом.

§ МХ — механотрон-двойной диод

§ МУХ — механотрон-двойной диод для измерения углов

3. Следующее число — это порядковый номер разработки прибора.

4. И последний символ — конструктивное выполнение прибора:

§ С — стеклянный баллон диаметром более 24 мм без цоколя либо с октальным (восьмиштырьковым) пластмассовым цоколем с ключом.

§ П — пальчиковые лампы (стеклянный баллон диаметром 19 или 22,5 мм с жёсткими штыревыми выводами без цоколя).

§ Б — миниатюрная серия с гибкими выводами и с диаметром корпуса менее 10мм.

§ А — миниатюрная серия с гибкими выводами и с диаметром корпуса менее 6мм.

§ К — серия ламп в керамическом корпусе.

Если четвертый элемент отсутствует, то это говорит о присутствии металлического корпуса!

16. Эле́ктрова́куумный трио́д, или просто трио́д, — электронная лампа, позволяющая входным сигналом управлять током в электрической цепи. Имеет три электрода: термоэлектронный катод анод и одну управляющую сетку. Обычно используется для усиления, генерации и преобразования электрических сигналов. Триоды были первыми устройствами, которые использовались для усиления электрических сигналов в начале XX века. В настоящее время вакуумные триоды практически полностью вытеснены полупроводниковыми транзисторами. Мощные радиолампы имеют сравнимый с мощными транзисторами КПД; надёжность их также сравнима, но срок службы значительно меньше. Маломощные триоды имеют невысокий КПД, так как на накал тратится значительная часть потребляемой каскадом мощности, порой более половины от общего потребления лампы.

Эти зависимости чаще всего называют статическими вольтамперными характеристиками.

Как видно из рис. 5, анодный ток существует как при положительном, так и при отрицательном напряжении на управляющей сетке. При отрицательном напряжении на сетке анодный ток уменьшается и, наконец, при сеточном напряжении Е’с, когда ни одни электрон не может преодолеть потенциально го барьера отрицательно заряженной сетки, анодный ток прекращается вовсе. Это сеточное напряжение называют напряжением сдвига, либо напряжением отсечки. При положительном напряжении на управляющей сетке, анодный ток сперва начинает возрастать. Одновременно появляется ток управляющей сетки. При больших положительных напряжениях на сетке, ток управляющей сетки резко возрастает, а анодный наоборот перестает расти, а затем начинает уменьшаться.

17. Тетро́д — электронная лампа, имеющая 4 электрода: термоэлектронный катод (прямого или косвенного накала), 2 сетки (управляющую и экранирующую) и анод. Изобретён Вальтером Шоттки в 1919. Приёмо-усилительные тетроды применялись в радиоприёмных трактах до массового распространения пентодов. Генераторные имодуляторные тетроды применяются по сей день в силовых каскадах радиопередатчиков. Лучевые тетроды нашли применение в выходных каскадах УНЧ и до сих пор широко используются в гитарных усилителях (реже — в высококачественных УНЧ). Особый класс приборов — электрометрические тетроды также имеют две сетки, но принципиально отличаются от обычных тетродов и конструктивно, и в практическом применении.

18.Пенто́д (от др.-греч. πέντε пять, по числу электродов) — вакуумная электронная лампа с экранирующей сеткой, в которой между экранирующей сеткой и анодом размещена третья (защитная или антидинатронная) сетка, подавляющая динатронный эффект. Как правило, в лампах прямого накала третья сетка соединяется со средней точкой катода, в лампах косвенного накала — с любой точкой катода. В большинстве пентодов третья сетка и катод соединены внутри баллона, поэтому у них всего четыре сигнальных вывода.По конструкции и назначению пентоды делятся на четыре основные типа: маломощные усилители высоких частот, выходные пентоды для видеоусилителей, выходные пентоды усилителей низких частот, и мощные генераторные пентоды[3].

Анодные вольт-амперные характеристики (ВАХ) маломощных пентодов близки к идеальным: резкий переход из режима возврата в режим перехвата происходит при относительно низких Ua; плоские «полки» ВАХ свидетельствуют о высоком выходном сопротивлении (6Ж32П — 2.5 МОм в номинальном режиме [75]). Это позволяет строить на пентодах почти совершенные дифференциальные каскады[76] и активные нагрузки (стабильные источники тока)[77]. В мощных пентодах выходное сопротивление относительно низкое, а переход в зону перехвата растянут. При малых анодных напряжениях и большом отрицательном смещении управляющей сетки наблюдается «тетродная» нелинейность полки ВАХ.

Качественный анализ ВАХ пентодов показывает, что

· Выходное сопротивление пентода (в том числе мощного низкочастотного) на практике можно считать бесконечно большим[20].

· Расчётный коэффициент усиления пентода по напряжению весьма велик (до 5000[78]) — настолько, что его точное значение теряет практический смысл и редко нормируется производителем. Усиление каскада на НЧ определяется не этим коэффициентом, а произведением крутизны лампы на сопротивление нагрузки[78].

· Мгновенное значения напряжения на аноде пентода может опускаться до значений, намного меньших, чем в триодном каскаде. Поэтому при равном напряжении питания размах напряжения на выходе пентода может быть больше, чем у триода[79]. (но меньше чем у лучевого тетрода).

· Спектр гармоник пентода содержит бо́льшую, чем в спектре триода, долю нечётных гармоник, и бо́льшую долю высших гармоник. В спектре гармоник триода доминирует вторая гармоника, а доля высших гармоник (шестой и выше) пренебрежительно мала[80].

 

 

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.