Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Полосы равной толщины и равного наклона



Классическим примером полос равной толщины являются кольца Ньютона. Они наблюдаются при отражении света от верхней и нижней границ тонкой воздушной прослойки, образованной поверхностями, соприкасающихся друг с другом толстой плоскопараллельной стеклянной пластинки и плосковыпуклой линзы с большим радиусом кривизны (рис. 32.4).

Большой радиус кривизны линзы делает поверхности пластинки и линзы,

обращенные друг к другу практически параллельными. Тем более, что

 


       
 
 
   

 


являются когерентными при малой толщине прослойки h (длина когерентности должна быть больше 2h), поэтому при их сложении будет иметь место интерференция. Поскольку интерференция наблюдается в малой области вблизи точки касания О линзы и плоской стеклянной пластинки, поверхности линзы и пластинки здесь можно считать параллельными, а падающий и отраженный лучи (1, 2, 3) направленными вдоль одной прямой.

На радиусе r вдоль окружности толщина прослойки h будет одинаковой, и в этом случае наблюдаются интерференционные полосы равной толщины, имеющие форму колец с центром в точке касания линзы О. Эта интерференционная картина была впервые описана в 1675 г. Ньютоном и называется кольцами Ньютона.

Из рисунка 32.4 видно, что оптическая разность хода интерферирующих волн 2 и 3 Δ = 2hn +λ /2.

Коэффициент преломления воздуха n = 1. Слагаемое λ /2 возникает из-за того, что при отражении от оптически более плотной среды волны 3 (от стекла) оптический ход волны скачком увеличивается на λ /2. В том месте воздушного зазора, где выполняется условие

Δ = 2d + λ /2 = mλ (условие максимума),

наблюдаются светлые кольца, а там, где

Δ = 2d + λ /2 = (2m + 1) λ /2 (условие минимума),

возникают темные кольца. В месте соприкосновения линзы с плоскостью

       
   
 
 

 


вид концентрических колец. Таким образом, полосы равной толщины – это интерференционные полосы, возникающие в результате интерференции когерентных волн от мест с одинаковой толщиной.

Полосы равного наклона интерференционные полосы, возникающие в результате наложения лучей, падающих на плоскопараллельную пластинку под одинаковыми углами.

Рассмотрим оптическую схему на рис. 32.6. Почти монохроматический

       
   
 


задней поверхности пластины, снова преломляясь, попадает на экран (2-2΄). Если длина когерентности >>2hn, где h – толщина пластины, а n – показатель преломления, то волны пучка, сходящиеся в некоторой точке экрана. например т. А, будут интерферировать. На схеме рис. 32.6 это волны, соответствующие лучам 1 и 2. Поскольку расходящийся от линзы пучок является коническим, то интерференционные полосы будут иметь вид окружностей. А так как интерференционные максимумы (а также минимумы) будут располагаться в местах, соответствующих одинаковому углу падения лучей (одинаковому наклону их к поверхности), то получающаяся картина называется полосами равного наклона.

Вопросы для самоконтроля.

 

1. В чем состоит явление интерференции?

2. Что такое когерентность?

3. В чем состоит временная когерентность?

Каков смысл времени и длины когерентности?

4. В чем состоит пространственная когерентность?

Каков смысл радиуса когерентности?

5. Что называется оптической длиной пути

и оптической разностью хода?

6. Каковы условия получения интерференционных максимумов и мини-

мумов при положении света от двух когерентных источников?

7. Как получаются полосы равной толщины и равного наклона?

 

Лекция № 33

 

ДИФРАКЦИЯ СВЕТА

План

1. Дифракция света. Принцип Гюйгенса-Френеля. Дифракция Френеля и Фраунгофера. Метод зон Френеля. Прямолинейное распространение света. Дифракция Френеля на круглом отверстии и диске.

2. Дифракция Фраунгофера на одной щели.

3. Дифракция Фраунгофера на одномерной дифракционной решетке. Многолучевая интерференция*.

4. Понятие о голографии.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.