Вращательным называют такое движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной кривой, называемой осью вращения (рис.1.9).Ось вращения может находиться как внутри (рис.1.9.а), так и вне тела (рис.1.9.б).
Поворот тела на некоторый угол можно задать в виде отрезка, длина которого , а направление совпадает с осью вращения. Для того, чтобы указать, в какую сторону совершается поворот вокруг данной оси, связывают направление поворота и изображающего его отрезка правилом правого винта: направление отрезка должно быть таким, чтобы, глядя вдоль него, мы видели поворот совершающимся по часовой стрелке (рис.1.10). Вектор поворота является не истинным вектором, а псевдовектором.
Векторная величина ,
где –время, за которое совершается поворот , называется угловой скоростью тела. Она направлена по оси вращения в сторону, определяемую правилом правого винта, и представляет собой псевдовектор. Модуль угловой скорости равен .
Вращение с постоянной угловой скоростью называют равномерным. Такое движение характеризуют периодом , под которым понимают время полного оборота. При этом , тогда , и . Число оборотов в единицу времени ( частота обращения) равно .
Подставив , получаем: .
Вектор может изменяться как при изменении скорости вращения тела вокруг оси ( по величине), так и при повороте оси вращения в пространстве ( в этом случае меняется по направлению). Изменение вектора угловой скорости со временем характеризуется угловым ускорением . Угловое ускорение, также как и угловая скорость, является псевдовектором.
Отдельные точки вращающегося тела имеют различные линейные скорости . Скорость каждой из точек непрерывно изменяет свое направление. Величина скорости определяется угловой скоростью вращения тела и расстоянием рассматриваемой точки от оси вращения. Пусть за малый промежуток времени тело повернулось на угол (рис.1.11). Точка, находящаяся на расстоянии от оси, проходит при этом путь . Линейная скорость точки равна . (1.9)
Эта формула связывает модули линейной и угловой скоростей. Найдем выражение, связывающее векторы и . Положение рассматриваемой точки тела будем определять радиус-вектором , проведенным из лежащего на оси вращения начала координат О ( рис.1.12). Из рисунка видно, что векторное произведение совпадает по направлению с вектором и имеет модуль, равный . Следовательно, .
Нормальное ускорение точек вращающегося тела равно .
Если ввести перпендикулярный к оси вращения вектор , проведенный в данную точку тела (рис.1.12), это выражение можно записать в векторной форме . Знак минус поставлен, так как векторы и направлены противоположно.
Будем считать, что ось вращения не поворачивается в пространстве. В этом случае расстояние рассматриваемой точки до оси вращения не меняется, , и, взяв производную от выражения (1.9), получаем
Таким образом, нормальное и тангенциальное ускорения растут линейно с увеличением расстояния точки от оси вращения.
В случае сложного вращения, когда тело движется одновременно относительно нескольких осей, необходимо производить сложения угловых скоростей. Рассмотрим движение твердого тела, вращающегося одновременно вокруг двух пересекающихся осей. Сообщим некоторому телу вращение с угловой скоростью вокруг оси ОА (рис. 1.13) и затем эту ось приведем во вращение с угловой скоростью вокруг оси OB, неподвижной в К-системе отсчета. Найдем результирующее движение тела в К-системе.
Введем вспомогательную K'-систему отсчета, жестко связанную с осями ОА и ОВ. Ясно, что эта система вращается с угловой скоростью , и тело вращается относительно нее с угловой скоростью .
За промежуток времени тело совершит поворот вокруг оси АО в K'- системе и одновременно поворот вокруг оси ОВ вместе с K'- системой. Суммарный поворот есть = + . Разделив обе части этого равенства на получим
.
Таким образом, результирующее движение твердого тела в K- системе представляет собой чистое вращение с угловой скоростью вокруг оси, совпадающей в каждый момент с вектором и проходящей через точку O (рис. 1.13). Эта ось перемещается относительно K- системы — она поворачивается с угловой скоростью вместе с осью ОА вокруг оси ОВ.
Нетрудно сообразить, что даже в том случае, когда угловые скорости и не меняются по модулю, тело будет обладать в K- системе угловым ускорением , направленным, согласно , за плоскость (рис. 1.13).
И последнее замечание. Поскольку вектор угловой скорости удовлетворяет основному свойству векторов — векторному сложению, можно представить как векторную сумму составляющих на определенные направления, т. е. = + +..., где все векторы относятся к одной и той же системе отсчета. Этим удобным и полезным приемом часто пользуются при анализе сложного движения твердого тела.
ОБОБЩЕННЫЕ КООРДИНАТЫ
Выше отмечалось, что для определения положения материальной точки в пространстве необходимо задать ее радиус-вектор, или три независимых координаты. Для определения положения системы из материальных точек надо задать радиус-векторов, т.е. 3 координат. Число независимых величин, задание которых необходимо для однозначного определения положения системы, называется числом ее степеней свободы. Эти величины не обязательно должны быть декартовыми координатами. Например, в ряде задач физики удобнее использовать сферические координаты.
Любые s величин , полностью характеризующие положение системы с s степенями свободы, называют ее обобщенными координатами. Производные от обобщенных координат называют обобщенными скоростями.
Для описания положения механической системы вводят систему координат в воображаемом s-мерном пространстве. Его называют конфигурационным или -пространством. По осям этой системы откладывают значения координат . Тогда для каждого момента времени положению системы в обычном пространстве будет соответствовать точка в конфигурационном пространстве. Движению системы в реальном трехмерном пространстве соответствует движение точки в s-мерном пространстве.