Найдем кинетическую энергию релятивистской частицы. Раньше было показано, что приращение кинетической энергии материальной точки на элементарном перемещении равно работе силы на этом перемещении:
(40.1)
Учитывая, что dr = v dt, и подставив в (40.1) выражение (39.2), получаем
Преобразовав данное выражение с учетом того, что vdv = vdv, и формулы (39.1), придем к выражению
(40.2)
т. е. приращение кинетической энергии частицы пропорционально приращению ее массы.
Так как кинетическая энергия покоящейся частицы равна нулю, а ее масса равна массе покоя m0, то, проинтегрировав (40.2), получим
(40.3)
или кинетическая энергия релятивистской частицы имеет вид
(40.4)
Выражение (40.4) при скоростях v«c переходит в классическое:
(разлагая в ряд при v<<c, правомерно пренебречь членами второго порядка малости).
А. Эйнштейн обобщил положение (40.2), предположив, что оно справедливо не только для кинетической энергии частицы, но и для полной энергии, а именно любое изменение массы m сопровождается изменением полной энергии частицы,
(40.5)
Отсюда А. Эйнштейн пришел к универсальной зависимости между полной энергией тела Е и его массой т:
(40.6)
Уравнение (40.6), равно как и (40.5), выражает фундаментальный закон природы — закон взаимосвязи (пропорциональности) массы и энергии: полная энергия системы равна произведению ее массы на квадрат скорости света в вакууме. Отметим, что в полную энергию Е не входит потенциальная энергия тела во внешнем силовом поле.
Закон (40.6) можно, учитывая выражение (40.3), записать в виде
откуда следует, что покоящееся тело (T=0) также обладает энергией
называемой энергией покоя. В классической механике энергия покоя Е0 не учитывается, считая, что при v=0 энергия покоящегося тела равна нулю.
В силу однородности времени в релятивистской механике, как и в классической, выполняется закон сохранения энергии: полная энергия замкнутой системы сохраняется, т. е. не изменяется с течением времени.
Из формул (40.6) и (39.4) найдем релятивистское соотношение между полной энергией и импульсом частицы:
(40.7)
Возвращаясь к уравнению (40.6), отметим еще раз, что оно имеет универсальный характер. Оно применимо ко воем формам энергии, т. е. можно утверждать, что с энергией, какой бы формы она ни была, связана масса
(40.8)
и, наоборот, со всякой массой связана энергия (40.6).
Чтобы охарактеризовать прочность связи и устойчивость системы каких-либо частиц (например, атомного ядра как системы из протонов и нейтронов), вводят понятие энергии связи. Энергия связи системы равна работе, которую необходимо затратить, чтобы разложить эту систему на составные части (например, атомное ядро — на протоны и нейтроны). Энергия связи системы
(40.9)
где m0i — масса покоя i-й частицы в свободном состоянии; М0 — масса покоя системы, состоящей из п частиц.
Закон взаимосвязи (пропорциональности) массы и энергии блестяще подтвержден экспериментом о выделении энергии при протекании ядерных реакций. Он широко используется для расчета энергетических эффектов при ядерных реакциях и превращениях элементарных частиц.
Рассматривая выводы специальной теории относительности, видим, что она, как, впрочем, и любые крупные открытия, потребовала пересмотра многих установившихся и ставших привычными представлений. Масса тела не остается постоянной величиной, а зависит от скорости тела; длина тел и длительность событий не являются абсолютными величинами, а носят относительный характер; наконец, масса и энергия оказались связанными друг с другом, хотя они и являются качественно различными свойствами материи.
Основной вывод теории относительности сводится к тому, что пространство и время органически взаимосвязаны и образуют единую форму существования материи — пространство-время. Только поэтому пространственно-временной интервал между двумя событиями является абсолютным, в то время как пространственные и временные промежутки между этими событиями относительны. Следовательно, вытекающие из преобразований Лоренца следствия являются выражением объективно существующих пространственно-временных соотношений движущейся материи.
Границы применимости классической механики
Кинематика дает описание движения тел, не затрагивая вопроса о том, почему тело движется именно так (например, равномерно по окружности, или равномерно-ускоренно по прямой), а не иначе.
Динамика изучает движение тел в связи с теми причинами (взаимодействиями между телами), которые обусловливают тот или иной характер движения.
В основе так называемой классической или ньютоновской механики лежат три закона динамики, сформулированные Ньютоном в 1687 г.
Законы Ньютона (как и все остальные физические законы) возникли в результате обобщения большого количества опытных фактов. Правильность их (хотя и для очень обширного, но все же ограниченного круга явлений) подтверждается согласием с опытом тех следствий, которые из них вытекают.
Ньютоновская механика достигла в течение двух столетий таких огромных успехов, что многие физики XIX столетия были убеждены в ее всемогуществе. Считалось, что объяснить любое физическое явление означает свести его к механическому процессу, подчиняющемуся законам Ньютона. Однако с развитием науки обнаружились новые факты, которые не укладывались в рамки классической механики. Эти факты получили свое объяснение в новых теориях — специальной теории относительности и квантовой механике.
В специальной теории относительности, созданной Эйнштейном в 1905 г., подверглись радикальному пересмотру ньютоновские представления о пространстве и времени. Этот пересмотр привел к созданию «механики больших скоростей» или, как ее называют, релятивистской механики. Новая механика не привела, однако, к полному отрицанию старой ньютоновской механики. Уравнения релятивистской механики в пределе (для скоростей, малых по сравнению со скоростью света) переходят в уравнения классической механики.
Таким образом, классическая механика вошла в релятивистскую. механику как ее частный случай и сохранила свое прежнее значение для описания движений, происходящих со скоростями, значительно меньшими скорости света.
Аналогично обстоит дело и с соотношением между классической и квантовой механикой, возникшей в 20-х годах нашего века в результате развития физики атома. Уравнения квантовой механики также дают в пределе (для масс, больших по сравнению с массами атомов) уравнения классической механики. Следовательно, классическая механика вошла и в квантовую механику в качестве ее предельного случая.
Таким образом, развитие науки не перечеркнуло классическую механику, а лишь показало ее ограниченную применимость. Классическая механика, основывающаяся на законах Ньютона, является механикой тел больших (по сравиению с массой атомов) масс, движущихся G малыми (по сравнению со скоростью света) скоростями.