Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Принципы квантовой механики

Представления в физике атомного ядра

Появление квантовой механики.

Квантовая механика – физическая теория, изучающая движение на микроуровне.

Еще в конце XIX века большинство ученых склонялись к точке зрения, что физическая картина мира в основном построена и останется в дальнейшем незыблемой. Предстоит уточнять лишь детали. Но впервые десятилетия XX века физические воззрения изменились коренным образом. Это было следствием «каскада» научных открытий, сделанных в течение чрезвычайно короткого исторического периода, охватывающего последние годы XIX столетия и первые десятилетия XX века.

В 1896 году французский физик Антуан Анри Беккерель (1852-1908) открыл явление самопроизвольного излучения урановой соли.

В его исследование включились французские физики, супруги Пьер Кюри (1859-1906) и Мария Склодовская-Кюри (1867-1934). В 1898 году были открыты новые элементы, также обладающие свойством испускать «беккерелевы лучи», — полоний и радий. Это свойство супруги Кюри назвали радиоактивностью.

А годом раньше, в 1897 году, в лаборатории Кавендиша в Кембридже при изучении электрического разряда в газах (катодных лучей) английский физик Джозеф Джон Томсон (1856-1940) открыл первую элементарную частицу — электрон.

В 1911 году знаменитый английский физик Эрнест Резерфорд (1871-1937) предложил свою модель атома, которая получила название планетарной.

Н. Бор, зная о модели Резерфорда и приняв ее в качестве исходной, разработал в 1913 году квантовую теорию строения атома.

Принципы квантовой механики

Принцип неопределенности Гейзенберга: «Невозможно одновременно с точностью определить координаты и скорость квантовой частицы»

В первой четверти ХХ века именно такова была реакция физиков, когда они стали исследовать поведение материи на атомном и субатомном уровнях.

Принцип Гейзенберга играет в квантовой механике ключевую роль хотя бы потому, что достаточно наглядно объясняет, как и почему микромир отличается от знакомого нам материального мира.

Чтобы отыскать, например, книгу, вы, войдя в комнату, окидываете ее взглядом, пока он не остановится на ней. На языке физики это означает, что вы провели визуальное измерение (нашли взглядом книгу) и получили результат — зафиксировали ее пространственные координаты (определили местоположение книги в комнате).

В начале 1920-х годов, когда произошел бурный всплеск творческой мысли, приведший к созданию квантовой механики, эту проблему первым осознал молодой немецкий физик-теоретик Вернер Гейзенберг. Им был сформулирован принцип неопределенности, названный теперь его именем:

Термин «неопределенность пространственной координаты» как раз и означает, что мы не знаем точного местоположения частицы. Например, если вы используете глобальную систему GPS, чтобы определить местоположение книги, система вычислит их с точностью до 2-3 метров. И тут мы подходим к самому принципиальному отличию микромира от нашего повседневного физического мира. В обычном мире, измеряя положение и скорость тела в пространстве, мы на него практически не воздействуем. Таким образом, в идеале мы можем одновременно измерить и скорость, и координаты объекта абсолютно точно (иными словами, с нулевой неопределенностью). Допустим, что нужно зафиксировать пространственное местонахождение электрона. Нам по-прежнему нужен измерительный инструмент, который вступит во взаимодействие с электроном и возвратит детекторам сигнал с информацией о его местопребывании.

Если нам удастся с нулевой погрешностью (абсолютно точно) определить одну из измеряемых величин, неопределенность другой величины будет равняться бесконечности, и о ней мы не будем знать вообще ничего. Иными словами, если бы нам удалось абсолютно точно установить координаты квантовой частицы, о ее скорости мы не имели бы ни малейшего представления; если бы нам удалось точно зафиксировать скорость частицы, мы бы понятия не имели, где она находится.

Принцип неопределенности не мешает нам с любой желаемой точностью измерить каждую из этих величин. Он утверждает лишь, что мы не в состоянии достоверно узнать и то, и другое одновременно.

Ключевым в соотношении Гейзенберга является взаимодействие между частицей-объектом измерения и инструментом измерения, влияющим на его результаты.

Принцип дополнительности Н. Бора: «Объекты микромира описываются и как частицы, и как волны, и одно описание дополняет другое».

 

В повседневной жизни имеется два способа переноса энергии в пространстве — посредством частиц или волн. Чтобы, скажем, скинуть со стола костяшку домино, балансирующую на его краю, можно придать ей необходимую энергию двумя способами. Во-первых, можно бросить в нее другую костяшку домино (то есть передать точечный импульс с помощью частицы). Во-вторых, можно построить в ряд стоящие костяшки домино, по цепочке ведущие к той, что стоит на краю стола, и уронить первую на вторую: в этом случае импульс передастся по цепочке — вторая костяшка завалит третью, третья четвертую и так далее. Это — волновой принцип передачи энергии. В обыденной жизни между двумя механизмами передачи энергии видимых противоречий не наблюдается. Так, баскетбольный мяч — это частица, а звук — это волна, и всё ясно.

Однако в квантовой механике всё обстоит отнюдь не так просто. Даже из простейших опытов с квантовыми объектами очень скоро становится понятно, что в микромире привычные нам принципы и законы макромира не действуют. Свет, который мы привыкли считать волной, порой ведет себя так, будто состоит из потока частиц (фотонов), а элементарные частицы, такие как электрон или даже массивный протон, нередко проявляют свойства волны. Если «выстреливать» электроны по одному, каждый из них будет оставлять четкий след на экране — то есть вести себя как частица. Самое интересное, что, то же самое будет, если вместо пучка электронов вы возьмете пучок фотонов: в пучке они будут вести себя как волны, а по отдельности — как частицы

Иными словами, в микромире объекты, которые ведут себя как частицы, при этом как бы «помнят» о своей волновой природе, и наоборот. Это странное свойство объектов микромира получило название квантово-волнового дуализма.

Принцип дополнительности — простая констатация этого факта. Согласно этому принципу, если мы измеряем свойства квантового объекта как частицы, мы видим, что он ведет себя как частица. Если же мы измеряем его волновые свойства, для нас он ведет себя как волна. Оба представления отнюдь не противоречат друг другу — они именно дополняют одно другое, что и отражено в названии принципа.

Строение атома.

Планетарная модель строения атома была предложена в результате открытия ядра атома Резерфордом:
1.В центре атома находится положительно заряженное ядро, занимающее ничтожную часть пространства внутри атома.
2.Весь положительный заряд и почти вся масса атома сосредоточены в его ядре (масса электрона равна 1/1823 а. е. м.).
3.Вокруг ядра по замкнутым орбитам вращаются электроны. Их число равно заряду ядра.
Ядро атома

Ядро атома состоит из протонов и нейтронов (общее название — нуклоны). Оно характеризуется тремя параметрами: А — массовое число, Z — заряд ядра, равный числу протонов, и N — число нейтронов в ядре. Эти параметры связаны между собой соотношением:
А = Z + N.
Число протонов в ядре равно порядковому номеру элемента.
Заряд ядра обычно пишут внизу слева от символа элемента, а массовое число — вверху слева (заряд ядра часто опускают).
Пример 4018Ar: ядро этого атома содержит 18 протонов и 22 нейтрона.
Атомы, ядра которых содержат одинаковое число протонов и разное число нейтронов, называются изотопами, например: 12/6С и 13/6С. Изотопы водорда имеют специальные символы и названия: 1Н — протий, 2D — дейтерий, 3Т — тритий. Химические свойства изотопов идентичны, некоторые физические свойства очень незначительно различаются..

Радиоактивность

Радиоактивность - это самопроизвольное, спонтанное превращение неустойчивых атомных ядер в ядра др. элементов, сопровождающееся испусканием частиц. Соответствующие элементы назвали радиоактивными или радионуклеидами.

В 1899 году Э. Резерфорд в результате экспериментов обнаружил, что радиоактивное излучение неоднородно и под действием сильного магнитного поля распадается на две составляющие, a - и b -лучи. Третью составляющую, g -лучи, обнаружил французский физик П. Вилард в 1900 году.

Гамма-лучи вызывают ионизацию атомов вещества. Основные процессы, возникающие при прохождении гамма-излучения через вещество:

• Фотоэффект — энергия гамма-луча поглощается электроном оболочки атома, и электрон, совершая работу выхода, покидает атом (который становится ионизированным, т.е. превращается в ион).

Выбивание светом электронов с поверхности токопроводящих материалов — явление, широко используемое сегодня в повседневной жизни. Например, некоторые системы сигнализации работают за счет передачи видимых или инфракрасных световых лучей на фотоэлектрический элемент, из которого выбиваются электроны, обеспечивающие электропроводность цепи, в которую он включен. Если на пути светового луча появляется препятствие, свет на датчик поступать перестает, поток электронов прекращается, цепь разрывается — и срабатывает электронная сигнализация.

 

• Облучение γ-лучами.в зависимости от дозы и продолжительности может вызвать хроническую и острую лучевые болезни. Эффекты облучения включают различные виды онкологических заболеваний. В то же время гамма-облучение подавляет рост раковых и других быстро делящихся клеток. Гамма-излучение является мутагенным и фактором.

Применение гамма- излучения:

• Гамма-дефектоскопия, контроль изделий просвечиванием γ-лучами.

• Консервирование пищевых продуктов.

• Стерилизация медицинских материалов и оборудования.

• Лучевая терапия.

• Уровнемеры

• Гамма-высотометры, измерение расстояния до поверхности при приземлении спускаемых космических аппаратов.

• Гамма-стерилизация специй, зерна, рыбы, мяса и других продуктов для увеличения срока хранения.

 

Виды радиоактивности

 

Деление атомного ядра бывает спонтанным (самопроизвольным) и вынужденным (в результате взаимодействия с другими частицами, прежде всего, с нейтронами). Деление тяжёлых ядер —экзотермический процесс, в результате которого высвобождается большое количество энергии в виде кинетической энергии продуктов реакции, а также излучения. Деление ядер служит источником энергии в ядерных реакторах и ядерном оружии. Установлено, что радиоактивны все химические элементы СС порядковым номером, большим 82 (то есть начиная с висмута), и некоторые более лёгкие элементы (прометий и технеций не имеют стабильных изотопов, а у некоторых элементов, например индия, калия или кальция, одни природные изотопы стабильны, другие же радиоактивны).

Весной 1913 года Содди сформулировал правило:

Испускание α-частиц уменьшает атомную массу на 4 и смещает его на 2 места влево по ПС.

Испускание β-частиц смещает элемент вправо на 1 место, почти не меняя его массы

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.