Match the following words with their Russian equivalents. Match the following words with their synonyms. covert communication side nefarious application simulation
Look at the title of the text. What information do you expect to read here?
What would you like to know about steganography?
Where have you met steganographic techniques?
Text 1. Read the text and give brief characteristics of the main steganographic techniques.
Steganography.
Steganography is the art of covered or hidden writing. The purpose of steganography is covert communication to hide a message from a third party. This differs from cryptography, the art of secret writing, which is intended to make a message unreadable by a third party but does not hide the existence of the secret communication. Although steganography is separate and distinct from cryptography, there are many analogies between the two, and some authors categorize steganography as a form of cryptography since hidden communication is a form of secret writing. Nevertheless, this paper will treat steganography as a separate field.
Although the term steganography was only coined at the end of the 15th century, the use of steganography dates back several millennia. In ancient times, messages were hidden on the back of wax writing tables, written on the stomachs of rabbits, or tattooed on the scalp of slaves. Invisible ink has been in use for centuries—for fun by children and students and for serious espionage by spies and terrorists. Microdots and microfilm, a staple of war and spy movies, came about after the invention of photography.
Steganography hides the covert message but not the fact that two parties are communicating with each other. The steganography process generally involves placing a hidden message in some transport medium, called the carrier. The secret message is embedded in the carrier to form the steganography medium. The use of a steganography key may be employed for encryption of the hidden message and/or for randomization in the steganography scheme. In summary:
Figure 1 shows a common taxonomy of steganographic techniques.
· Technical steganography uses scientific methods to hide a message, such as the use of invisible ink or microdots and other size-reduction methods.
Figure 1. Classification of Steganography Techniques (Adapted from Bauer 2002)
· Linguistic steganography hides the message in the carrier in some nonobvious ways and is further categorized as semagrams or open codes.
· Semagrams hide information by the use of symbols or signs. A visual semagram uses innocent-looking or everyday physical objects to convey a message, such as doodles or the positioning of items on a desk or Website. A text semagram hides a message by modifying the appearance of the carrier text, such as subtle changes in font size or type, adding extra spaces, or different flourishes in letters or handwritten text.
· Open codes hide a message in a legitimate carrier message in ways that are not obvious to an unsuspecting observer. The carrier message is sometimes called the overt communication, whereas the hidden message is the covert communication. This category is subdivided into jargon codes and covered ciphers.
· Jargon code, as the name suggests, uses language that is understood by a group of people but is meaningless to others. Jargon codes include warchalking (symbols used to indicate the presence and type of wireless network signal, underground terminology, or an innocent conversation that conveys special meaning because of facts known only to the speakers). A subset of jargon codes is cue codes, where certain prearranged phrases convey meaning.
· Covered or concealment ciphers hide a message openly in the carrier medium so that it can be recovered by anyone who knows the secret for how it was concealed. A grille cipher employs a template that is used to cover the carrier message. The words that appear in the openings of the template are the hidden message. A null cipher hides the message according to some prearranged set of rules, such as "read every fifth word" or "look at the third character in every word."
As an increasing amount of data is stored on computers and transmitted over networks, it is not surprising that steganography has entered the digital age. On computers and networks, steganography applications allow for someone to hide any type of binary file in any other binary file, although image and audio files are today's most common carriers.
Steganography provides some very useful and commercially important functions in the digital world, most notably digital watermarking. In this application, an author can embed a hidden message in a file so that ownership of intellectual property can later be asserted and/or to ensure the integrity of the content. An artist, for example, could post original artwork on a Website. If someone else steals the file and claims the work as his or her own, the artist can later prove ownership because only he/she can recover the watermark. Although conceptually similar to steganography, digital watermarking usually has different technical goals. Generally only a small amount of repetitive information is inserted into the carrier, it is not necessary to hide the watermarking information, and it is useful for the watermark to be able to be removed while maintaining the integrity of the carrier.
Steganography has a number of nefarious applications; most notably hiding records of illegal activity, financial fraud, industrial espionage, and communication among members of criminal or terrorist organizations.