Учебно - методическое пособие к практическим занятиям
По дисциплине
«Инженерные сети. Теплогазоснабжение и вентиляция»
(примеры расчетов)
Самара 2011
Составители: Дежурова Наталья Юрьевна
Нохрина Елена Николаевна
УДК 628.81/83 07
Отопление и вентиляция жилых зданий: учебно-методическое пособие к контрольной работе и практическим занятиям по дисциплине «Инженерные сети. Теплогазоснабжение и вентиляция/ Сост.: Н.Ю. Дежурова, Е.Н. Нохрина; Самарский гос. арх. - строит. ун-т. – Самара, 2011. – 80 с.
Изложена методика проведения практических занятий и выполнения контрольных работ по курсу «Инженерные сети и оборудование зданий» Теплогазоснабжение и вентиляция. Данное учебное пособие дает широкий выбор вариантов конструктивных решений наружных стен, вариантов планов типовых этажей, приведены справочные данные для проведения расчетов.
Предназначены для студентов дневной и заочной форм обучения специальности 270102.65 «Промышленное и гражданское строительство», а также могут быть использованы студентами специальности 270105.65 «Городское строительство и хозяйство».
Приложение А Карта зон влажности …………………….…………….67
Приложение Б Условия эксплуатации ограждающих конструкций в зависимости от влажностного режима помещений и зон влажности …………………………………………68
Приложение В Теплофизические характеристики материалов …….. ..69
Приложение Г Варианты секций типового этажа …………………...70
Приложение Д Значения коэффициента затекания воды в приборных узлах с радиаторами секционными и панельными …..75
Приложение Е Тепловой поток 1 м открыто проложенных вертикальных гладких металлических труб, окрашенных масляной краской, q, Вт/м ……………………………………….76
Приложение Ж Таблица для расчета круглых стальных воздуховодов при tв = 20 ºС …………………………………………..77
Приложение З Поправочные коэффициенты на потери давления на трение, учитывающие шероховатость материала воздуховодов ………………………………………….78
Приложение И Коэффициенты местных сопротивлений для различных
элементов воздуховодов …………………………….79
1 Требования к оформлению и содержание контрольной работы (практических занятий) и исходные данные
Контрольная работа состоит из расчетно-пояснительной записки и графической части.
Все необходимые исходные данные принимаются по таблице 1 в соответствии с последней цифрой шифра студента.
Расчетно-пояснительная записка содержит следующие разделы:
1. Климатические данные
2. Выбор ограждающих конструкций и их теплотехнический расчет
3. Расчет теплопотерь помещениями здания
4. Разработка схемы центрального отопления (размещение нагревательных приборов, стояков, магистралей и узла управления)
5. Расчет нагревательных приборов
6. Конструктивное решение системы естественной вентиляции
7. Аэродинамический расчет системы вентиляции.
Пояснительная записка выполняется на листах формата А4 или тетради в клетку.
Графическая часть выполняется на миллиметровочной бумаге, вклеивается в тетрадь и содержит:
1. План секции типового этажа М 1:100 (см. приложение)
2. План подвала М 1:100
3. План чердака М 1:100
4. Аксонометрическая схема системы отопления М 1:100.
План подвала и чердака вычерчиваются на основании плана типового этажа.
Контрольная работа предусматривает расчет двухэтажного жилого дома, расчеты производятся для одной секции. Система отопления – однотрубная с верхней разводкой, тупиковая.
Конструктивное решение перекрытий над неотапливаемым подвалом и теплым чердаком принять по аналогии с примером расчета.
Климатические характеристики района строительства приведенные в таблице 1, выписываются из СНиП 23-01-99* Строительная климатология [1]:
1) средняя температура наиболее холодной пятидневки обеспеченностью 0,92, [1] (табл. 1 графа 5);
2) средняя температура отопительного периода [1] (табл. 1 графа 12);
3) продолжительность отопительного периода [1] (табл. 1 графа 11);
4) максимальная из средних скоростей ветра по румбам за январь [1] (талб. 1 графа 19).
Теплофизические характеристики материалов ограждения принимаются в зависимости от условий эксплуатации конструкции, которые определяются влажностным режимом помещения и зоной влажности места строительства.
Влажностный режим жилого помещения принимаем нормальным, исходя из заданной температуры +20 ºС и относительной влажности внутреннего воздуха 55 %.
По карте приложение А и приложение Б определяем условия эксплуатации ограждающих конструкций. Далее по приложению В принимаем основные теплофизические характеристики материалов слоев ограждения, а именно коэффициенты:
теплопроводности , Вт/(м·ºС);
теплоусвоения , Вт/(м2·ºС);
паропроницаемости , мг/(м·ч·Па).
Таблица 1
Исходные данные для выполнения контрольной работы
Исходные данные
Численные значения в зависимости от последней цифры шифра
Номер варианта плана секции типового этажа (приложение Г)
Высота этажа (от пола до пола)
2,7
3,0
3,1
3,2
2,9
3,0
3,1
2,7
3,2
2,9
Вариант конструкции наружной стены (таблица 2)
Город
Параметры
Москва
Санкт-Петербург
Калининград
Чебоксары
Нижний Новгород
Воронеж
Саратов
Волгоград
Оренбург
Пенза
, ºС
-28
-26
-19
-32
-31
-26
-27
-25
-31
-29
, ºС
-3,1
-1,8
1,1
-4,9
-4,1
-3,1
-4,3
-2,4
-6,3
-4,5
, сут
, м/с
4,9
4,2
4,1
5,0
5,1
5,1
5,6
8,1
5,5
5,6
Ориентация по сторонам света
С
Ю
З
В
СВ
СЗ
ЮВ
ЮЗ
В
З
Толщина междуэтажного перекрытия
0,3
0,25
0,22
0,3
0,25
0,22
0,3
0,25
0,22
0,3
Кухни с плитой
двухкомфорочной
трехкомфорочной
четырехкомфорочной
+
-
-
-
+
-
-
-
+
+
-
-
-
+
-
-
-
+
+
-
-
-
+
-
+
-
-
-
+
-
Размер окон 1,8 х 1,5 (для жилых комнат); 1,5 х 1,5 (для кухни)
Вариант 5
1слой–известково-песчаный раствор;
2 слой – кладка из
керамического кирпича;
3 слой – монолитный керамзитобетон,
;
4 слой – цементно-песчаный раствор;
5 слой – фактурный слой фасадной системы
Вариант 6
1 слой – известково-песчаный раствор;
2 слой – монолитный керамзитобетон,
;
3 слой – кладка из керамического кирпича
Вариант 7
1 слой – известково-песчаный раствор;
2 слой – монолитный керамзитобетон,
;
3 слой – кладка из керамического кирпича
Вариант 8
1 слой – известково-песчаный раствор;
2 слой – монолитный керамзитобетон,
;
3 слой – кладка из
силикатного кирпича
Вариант 9
1 слой – известково-песчаный раствор;
2 слой – монолитный
керамзитобетон,
;
3 слой – кладка из
силикатного кирпича
Вариант 10
1 слой – известково-песчаный раствор;
2 слой – кладка из силикатного кирпича;
3 слой – монолитный керамзитобетон,
;
4 слой – кирпичная кладка из керамического кирпича
Таблица 3
Значения коэффициента теплотехнической однородности
№
п/п
Вид конструкции наружной стены
r
Однослойные несущие наружные стены
0,98 0,92
Однослойные самонесущие наружные стены в монолитно-каркасных зданиях
0,78 0,8
Двухслойные наружные стены с внутренним утеплителем
0.82 0,85
Двухслойные наружные стены с невентилируемыми фасадными системами типа ЛАЭС
0,92 0,93
Двухслойные наружные стены с вентилируемым фасадом
0,76 0,8
Трёхслойные наружные стены с использованием эффективных утеплителей
0,84 0,86
2 Конструктивные решения наружных стен энергоэффективных зданий
Конструктивные решения наружных стен энергоэффективных зданий, применяемые при строительстве жилых и общественных сооружений, можно разделить на 3 группы (рис.1):
1) однослойные;
2) двухслойные;
3) трехслойные.
Однослойные наружные стены выполняются из ячеистобетонных блоков, которые, как правило, проектируют самонесущими с поэтажным опиранием на элементы перекрытия, с обязательной защитой от внешних атмосферных воздействий путем нанесения штукатурки, облицовки и т.д. Передача механических усилий в таких конструкциях осуществляется через железобетонные колонны.
Двухслойные наружные стены содержат несущий и теплоизоляционный слои. При этом утеплитель может быть расположен как снаружи, так и изнутри.
В начале реализации программы энергосбережения в Самарской области в основном применялось внутреннее утепление. В качестве теплоизоляционного материала использовались пенополистирол и плиты из штапельного стекловолокна «URSA». Со стороны помещения утеплители защищались гипсокартоном или штукатуркой. Для защиты утеплителей от увлажнения и накопления влаги устанавливалась пароизоляция в виде полиэтиленовой пленки.
При дальнейшей эксплуатации зданий выявилось много дефектов, связанных с нарушением воздухообмена в помещениях, появлением темных пятен, плесени и грибков на внутренних поверхностях наружных стен. Поэтому в настоящее время внутреннее утепление используется лишь при установке приточно-вытяжной механической вентиляции. В качестве утеплителей применяются материалы с низким водопоглощением, например, пеноплекс и напыляемый пенополиуретан.
Системы с наружным утеплением имеют ряд существенных преимуществ. К ним относятся: высокая теплотехническая однородность, ремонтопригодность, возможность реализации архитектурных решений различной формы.
В практике строительства находят применение два варианта фасадных систем: с наружным штукатурным слоем; с вентилируемым воздушным зазором.
При первом варианте исполнения фасадных систем в качестве утеплителей в основном используются плиты пенополистирола. Утеплитель от внешних атмосферных воздействий защищен базовым клеевым слоем, армированной стеклосеткой и декоративным слоем.
Рис. 1. Виды наружных стен энергоэффективных зданий:
а - однослойная, б - двухслойные, в - трехслойные;
В вентилируемых фасадах используется лишь негорючий утеплитель в виде плит из базальтового волокна. Утеплитель защищен от воздействия атмосферной влаги фасадными плитами, которые крепятся к стене с помощью кронштейнов. Между плитами и утеплителем предусматривается воздушный зазор.
При проектировании вентилируемых фасадных систем создается наиболее благоприятный тепловлажностный режим наружных стен, так как водяные пары, проходящие через наружную стену, смешиваются с наружным воздухом, поступающим через воздушную прослойку, и выбрасываются на улицу через вытяжные каналы.
Трехслойные стены, возводимые ранее, применялись, в основном, в виде колодцевой кладки. Они выполнялись из мелкоштучных изделий, расположенных между наружным и внутренним слоями утеплителя. Коэффициент теплотехнической однородности конструкций относительно невелик (r < 0,5) из-за наличия кирпичных перемычек. При реализации в России второго этапа энергосбережения достичь требуемых значений приведенного сопротивления теплопередаче с помощью колодцевой кладки не представляется возможным.
В практике строительства широкое применение нашли трехслойные стены с использованием гибких связей, для изготовления которых применяется стальная арматура, с соответствующими антикоррозионными свойствами стали или защитных покрытий. В качестве внутреннего слоя используется ячеистый бетон, а теплоизоляционных материалов – пенополистирол, минеральные плиты и пеноизол. Облицовочный слой выполняется из керамического кирпича.
Трехслойные бетонные стены при крупнопанельном домостроении применяются давно, но с более низким значением приведенного сопротивления теплопередаче. Для повышения теплотехнической однородности панельных конструкций необходимо использовать гибкие стальные связи в виде отдельных стержней или их комбинаций. В качестве промежуточного слоя в таких конструкциях чаще применяется пенополистирол.
В настоящее время широкое применение находят трехслойные сэндвич-панели для строительства торговых центров и промышленных объектов.
В качестве среднего слоя в таких конструкциях применяются эффективные теплоизоляционные материалы – минвата, пенополистирол, пенополиуретан и пеноизол. Трехслойные ограждающие конструкции отличаются неоднородностью материалов в сечении, сложной геометрией и стыками. По конструктивным причинам для образования связей между оболочками необходимо, чтобы более прочные материалы проходили через теплоизоляцию или заходили в нее, нарушая тем самым однородность теплоизоляции. В этом случае образуются так называемые мостики холода. Типичными примерами таких мостиков холода могут служить обрамляющие ребра в трехслойных панелях с эффективным утеплением жилых зданий, угловое крепление деревянным брусом трехслойных панелей с облицовками из древесностружечной плиты и утеплителями и т.д.
Приведенное сопротивление теплопередаче ограждающих конструкций R0 следует принимать в соответствии с заданием на проектирование, но не менее требуемых значений R0тр, определяемых, исходя из санитарно-гигиенических условий, по формуле (1), и условий энергосбережения по таблице 4.
1. Определяем требуемое сопротивление теплопередаче ограждения, исходя из санитарно-гигиенических и комфортных условий:
(1)
где n – коэффициент, принимаемый в зависимости от положения наружной поверхности ограждающей конструкции по отношению к наружному воздуху, таблица 6 [2];
расчетная температура внутреннего воздуха, °С;
расчетная зимняя температура наружного воздуха, равная средней температуре наиболее холодной пятидневки обеспеченностью 0,92 [1];
коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, принимаемый по табл. 7 [2], Вт/(м2·ºС).
2. Определяем требуемое приведенное сопротивление теплоотдаче ограждения, исходя из условия энергосбережения [2].
Градусосутки отопительного периода (ГСОП) следует определять по формуле:
ГСОП= , (2)
где средняя температура, ºС, и продолжительность отопительного периода со средней суточной температурой воздуха 8 ºС [1]. Величина требуемого приведенного сопротивления теплопередаче определяется по табл. 4
Таблица 4
Требуемоеприведенное сопротивление теплопередаче
ограждающих конструкций зданий
Здания и
помещения
Градусосутки отопительного периода, °С·сут.
Приведенное сопротивление теплопередаче ограждающих конструкций, (м2·°С)/Вт:
стен
покрытий и перекрытий над проездами
перекрытий чердачных, над холодными подпольями и подвалами
окон и балконных дверей
Жилые, лечебно-профилактические и детские учреждения, школьные интернаты.
2,1
2,8
3,5
4,2
4,9
5,6
3,2
4,2
5,2
6,2
7,2
8,2
2,8
3,7
4,6
5,5
6,4
7,3
0,30
0,45
0,60
0,70
0,75
0,80
Общественные, кроме указанных выше, административные и бытовые, за исключением помещений с влажным или мокрым режимом
1,6
2,4
3,0
3,6
4,2
4,8
2,4
3,2
4,0
4,8
5,6
6,4
2,0
2,7
3,4
4,1
4,8
5,5
0,30
0,40
0,50
0,60
0,70
0,80
Производственные с сухим и нормальным режимами
1,4
1,8
2,2
2,6
3,0
3,4
2,0
2,5
3,0
3,5
4,0
4,5
1,4
1,8
2,2
2,6
3,0
3,4
0,25
0,30
0,35
0,40
0,45
0,50
Примечания:
1. Промежуточные значения R0тр следует определять интерполяцией.
2. Нормы сопротивления теплопередаче светопрозрачных ограждающих конструкций для помещений производственных зданий с влажным и мокрым режимами, с избытками явного тепла от 23 Вт/м3, а также для помещений общественных, административных и бытовых зданий с влажным или мокрым режимами следует принимать как для помещений с сухим и нормальным режимами производственных зданий.
3. Приведенное сопротивление теплопередаче глухой части балконных дверей должно быть не менее чем в 1,5 раза выше сопротивления теплопередаче светопрозрачной части этих изделий.
4. В отдельных обоснованных случаях, связанных с конкретными конструктивными решениями заполнения оконных и других проемов, допускается применять конструкции окон и балконных дверей с приведенным сопротивлением теплопередаче на 5 % ниже установленного в таблице.
Величины приведенного сопротивления теплопередаче отдельных ограждающих конструкций следует принимать равными не ниже значений, определенных по формуле (3) для стен жилых и общественных зданий, либо по формуле (4) – для остальных ограждающих конструкций:
(3)
(4)
где – нормируемые сопротивления теплопередаче, соответствующие требованиям второго этапа энергосбережения, (м2·°С)/Вт.
3. Находим приведенное сопротивление теплопередаче ограждающей конструкции по формуле
, (5)
где R0усл. – сопротивление теплопередаче глади наружной стены без учёта влияния наружных углов, стыков и перекрытий, оконных откосов и теплопроводных включений, (м2·°С)/Вт;
r – коэффициент теплотехнической однородности, определяемый согласно таблице 2.
Определяем величину R0услдля многослойной наружной стены
(м2·°С)/Вт, (6)
где Rк – термическое сопротивление ограждающей конструкции, (м2·°С)/Вт;
– коэффициент теплоотдачи (для зимних условий) наружной поверхности ограждающей конструкции, определяемый по таблице 7 [2], Вт/(м2·°С); 23 Вт/(м2·°С).
(м2·°С)/Вт, (7)
где R1, R2, …Rn – термические сопротивления отдельных слоев конструкции, (м2·°С)/Вт.
Термическое сопротивление R, (м2·°С)/Вт, слоя многослойной ограждающей конструкции следует определять по формуле
(8)
где толщина слоя, м;
расчётный коэффициент теплопроводности материала слоя,
Вт/(м·°С) (приложение В).
Величину r предварительно задаем в зависимости от конструкции проектируемой наружной стены.
4. Сравниваем сопротивление теплопередаче с требуемыми значениями, исходя из комфортных условий и условий энергосбережения, выбирая большее значение .
Должно соблюдаться неравенство
Если оно выполняется, то конструкция отвечает теплотехническим требованиям. В противном случае нужно увеличить толщину утеплителя и повторить расчет.
По фактическому сопротивлению теплопередаче R0усл находят коэффициент теплопередачи ограждающей конструкции K, Вт/(м2·ºС), по формуле
. (9)
Теплотехнический расчет наружной стены (пример расчета)
Исходные данные
1. Район строительства – г. Самара.
2. Средняя температура наиболее холодной пятидневки обеспеченностью 0,92 [1] tн5 = -30 °С.
3. Средняя температура отопительного периода [1] = -5,2 °С.
4. Продолжительность отопительного периода 203 сут.
5. Температура воздуха внутри здания tв =20 °С.
6. Относительная влажность воздуха =55 %.
7. Зона влажности – сухая (приложение А).
8. Условия эксплуатации ограждающих конструкций – А (приложение Б).
В таблице 5 показан состав ограждения, а на рисунке 2 показан порядок расположения слоев в конструкции.
Порядок расчета
1. Определяем требуемое сопротивление теплопередаче наружной стены, исходя из санитарно-гигиенических и комфортных условий:
.
где n – коэффициент, принимаемый в зависимости от положения наружной поверхности ограждающей конструкции по отношению к наружному воздуху; для наружных стен n = 1;
расчетная температура внутреннего воздуха, °С;
расчетная зимняя температура наружного воздуха, равная средней температуре наиболее холодной пятидневки обеспеченностью 0,92 [1];
нормативный температурный перепад, °С, таблица 5 [2], для наружных стен жилых зданий 4 °С;
коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, принимаемый по табл. 7 [2], 8,7 Вт/(м2·ºС).
Таблица 5
Состав ограждения
№ п/п
Наименование
Толщина
, м
Плотность , кг/м3
Коэффициент теплопроводности
, Вт/(м оС)
Известково-песчаный раствор
0,02
0,70
Кладка из кирпича керамического на цементно-песчаном растворе
0,51
0,70
Утеплитель - пенополистирол ПСБС - 25
0,04
Фактурный слой фасадной системы
0,0035
0,76
2. Определяем требуемое приведенное сопротивление теплопередаче наружной стены, исходя из условия энергосбережения. Градусосутки отопительного периода (ГСОП) определяем по формуле
ГСОП= = (20+5,2)·203 = 5116 (ºС·сут);
где средняя температура, ºС, и продолжительность отопительного периода со средней суточной температурой воздуха 8 ºС
(м2·ºС)/Вт.
требуемое приведенное сопротивление теплопередаче определяем по табл. 4 методом интерполяции.
3. Из двух значений 1,43 (м2·ºС)/Вт и 3,19 (м2·ºС)/Вт
принимаем наибольшее значение 3,19 (м2·ºС)/Вт.
4. Определяем требуемую толщину утеплителя из условия .
Приведенное сопротивление теплопередаче ограждающей конструкции определяется по формуле
где R0усл. – сопротивление теплопередаче глади наружной стены без учёта влияния наружных углов, стыков и перекрытий, оконных откосов и теплопроводных включений, (м2·°С)/Вт;
r – коэффициент теплотехнической однородности, зависящий от конструкции стены определяемый согласно таблице 2.
Принимаем для двухслойной наружной стены с наружным утеплителем, см. табл. 3.
5.
(м2·°С)/Вт
6. Определяем толщину утеплителя
м.
м - стандарстная величина утеплителя.
Принимаем стандартную величину.
7. Определяем приведенные сопротивления теплопередачи ограждающих конструкций, исходя из стандартной толщины утеплителя
(м2·°С)/Вт
(м2·°С)/Вт
Должно соблюдаться условие
3,38 > 3,19 (м2·°С)/Вт - условие выполнено
8. По фактическому сопротивлению теплопередачи ограждающей конструкции , находим коэффициент теплопередачи наружной стены
Вт/(м2·°С)
9. Толщина стены
Окна и балконные двери
По таблице 4 и по ГСОП = 5116 ºС·сут находим для окон и балконных дверей (м2·°С)/Вт
Вт/(м2·°С).
Наружные двери
В здании принимаем наружные двери двойные с тамбуром между ними (м2·°С)/Вт.
Коэффициент теплопередачи перекрытия над неотапливаемым подвалом
Вт/(м2·°С)
Толщина перекрытия над неотапливаемым подвалом
4 Расчет теплопотерь помещениями здания
Расчет теплопотерь наружными ограждениями проводится для каждого помещения первого и второго этажа для половины здания.
Теплопотери отапливаемых помещений состоят из основных и добавочных. Потери тепла помещениями здания определяются как сумма теплопотерь через отдельные ограждающие конструкции (стены, окна, потолок, пол над неотапливаемым подвлом) с округлением до 10 Вт.
Основные потери через ограждающие конструкции рассчитывают по формуле
, Вт (10)
где расчетная площадь ограждающей конструкции, м2, определяемая с точностью до 0,1 м2 в соответствии с общепринятыми правилами обмера [4] см. рис. 1;
коэффициент теплопередачи ограждающей конструкции определяемый по результатам теплотехнического расчета;
расчетная температура воздуха в помещении, ºС, принимаемая по СНиП [4] в соответствии с назначением помещения;
расчетная температура наружного воздуха, ºС, принимается (независимо от тепловой инерционности ограждения) равной средней температуре наиболее холодной пятидневки ;
коэффициент, зависящий от положения наружной поверхностиограждения по отношению к наружному воздуху, принимается по СНиП [2] (см. теплотехнический расчет);
добавочные потери тепла в долях от основных потерь.
Добавочные потери теплоты учитывают ориентацию по сторонам света для всех наружных вертикальных ограждений (стен, окон, наружных дверей) обращенных на север, восток, северо-восток, северо-запад 0,1; на юго-восток и запад 0,05; на юг и юго-запад 0.
Для наружных дверей, не оборудованных воздушными завесами в зависимости от конструкции дверей и высоты здания H:
0,27· H – для двойных дверей с амбуром между ними;
0,34· H – для двойных дверей без тамбура;
0,22· H – для одинарных дверей.
Расчетная температура воздуха в помещениях принимается в зависимости от его назначения по СНиП [4] для жилых комнат 20ºС, в угловых помещениях квартир расчетная температура берется на 2 ºС выше - 22 ºС, в кухнях - 18 ºС, туалетах 18 ºС, ванная комната - 25 ºС, совмещенный санузел - 25 ºС, кладовая, коридор 16 ºС, вестибюль, лестничная клетка 16 ºС.
Длины ограждающих конструкций принимаются по плану этажа. При этом толщина наружных стен должна быть вычерчена в соответствии с данными теплотехнического расчета. Высота ограждающих конструкций (стен, окон, дверей) принимается по исходным данным задания. При определении высоты наружной стены следует учитывать толщину конструкции пола или чердачного перекрытия (см. рис. 5).
;
,
где высота наружной стены соответственно первого и второго этажей;
толщины перекрытий над неотапливаемым подвалом и
чердаком (принимаются из теплотехнического расчета);
толщина междуэтажного перекрытия.
а
б
Рис. 5. Определение размеров ограждающих конструкций при расчете теплопотерь помещения (НС – наружных стен, Пл – пола, Пт – потолка, О – окон): а – разрез здания; б – план здания.
Помимо основных потерь тепла , необходимо учитывать потери теплоты на нагрев инфильтрационного воздуха. Инфильтрационный воздух поступает в помещение с температурой, близкой к температуре наружного воздуха. Поэтому в холодный период года его необходимо нагревать до температуры помещения.
Расход теплоты для нагрев инфильтрационного воздуха принимается по формуле
, Вт (11)
где удельный расход удаляемого воздуха, м3/ч; для жилых зданий принимается 3 м3/ч на 1 м2 площади пола жилого помещения и кухни;
Величина бытовых тепловыделений , Вт, определяется для жилых комнат и кухонь жилых зданий из расчета 10 Вт на 1 м2 площади пола
, Вт (13)
Теплопотери помещения жилых комнат и кухонь , Вт, определяются по формуле , Вт (14)
Для остальных помещений жилых зданий
(15)
Расчет теплопотерь выполняется в табличной форме (табл. 8).
Для удобства расчета теплопотерь необходимо пронумеровать все помещения здания. Нумерацию следует произыводить поэтажно, начиная, например, с угловых комнат. Помещениям первого этажа присваиваются номера 101, 102, 103 …, второго – 201, 202, 203 … . Первая цифра указывает, на каком этаже находится рассматриваемое помещение. В задании студентам дается план типового этажа, поэтому над комнатой 101 располагается комната 201 и т.п. Лестничные клетки обозначаются ЛК-1, ЛК-2.
Записывается сокращенно ориентация ограждающих конструкций обращенных на север – С, восток – В, юго-запад – ЮЗ, северо-запад – СЗ и т.д.
При вычислении площади стен удобнее не вычитать из них плоащдь окон; таким образом, теплопотери через стены получается несколько завышеннными. При вычислении же теплопотерь через окна величину коэффициента теплопередачи принимают равной . Аналогично поступают и в том случае, если в наружной стене имеются балконные двери.
Расчет теплопотерь производят для помещений первого этажа, затем - второго. Если помещение имеет планировку и ориентацию по сторонам света, аналогичную с ранее рассчитанным помещением, то повторно расчет теплопотерь не производится, а в бланке теплопотерь напротив номера помещения записывается: «То же, что и для №» (указывается номер ранее рассчитанного аналогичного помещения) и итоговое значение теплопотерь для этого помещения.
Теплопотери лестничной клетки определяют в целом по всей ее высоте, как для одного помещения.
Теплопотери через строительные ограждения между смежными отапливаемыми помещениями, например, через внутренние стены, следует учитывать только при разности расчетных температур внутреннего воздуха этих помещений более 3 ºС.
Таблица 8
Теплопотери помещений
№
помещения
Наименование помещения и его внутренняя температура
Характеристика ограждения
Коэффициент теплопередачи k, Вт/(м2оС)
Расчетная разность температур
(tв- tн5)·n
Добавочные потери теплоты
Сумма добавочных тепло-потерь
Потери тепла через ограждения Qo, Вт
Расход тепла на нагрев
инфильтрационного воздуха Qинф, Вт