Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Будова і принцип роботи металевого дифузійного насоса ММ-40А



ЛАБОРАТОРНА РОБОТА № 3

БУДОВА І ПРИНЦИП РОБОТИ ВИСОКОВАКУУМНИХ ПАРОСТРУМИННИХ ТА ДИФУЗІЙНИХ НАСОСІВ. ВАКУУМНА УСТАНОВКА З МЕТАЛЕВИМ ДИФУЗІЙНИМ НАСОСОМ ДЛЯ ОТРИМАННЯ ВИСОКОГО ВАКУУМУ

Мета роботи - вивчення будови і принципу роботи металевого дифузійного

вакуумного насоса, вивчення будови вакуумної установки

для отримання високого вакууму, правил її експлуатації і

техніки безпечної роботи, отримання навичок пуску і зупин-

ки як високовакуумного насоса, так і вакуумної установки.

Обладнання,з якогоскладається лабораторна установка: камера відкачки для проведення технологічних операцій; дифузійний насос ММ-40А; двоступінчастий пластинчасто–статорний насос ВМ-461М; латр для регулювання напруги живлення підігрівача; вентиль для відокремлення дифузійного насоса від камери відкачки.

Зауваження !Перед виконанням роботи необхідно повторити правила пуску, експлуатації і зупинки обертових насосів попереднього вакууму, а також вимірювання тиску за допомогою термопарного манометра (див. лаб. роб. № 1, 2).

 

Будова і принцип роботи високовакуумних пароструминних та

Дифузійних насосів

Робота обертових насосів для отримання попереднього(низького) вакууму базується на використанні закону Бойля–Маріотта. Граничний тиск таких насосів не менший тор. Причиною цього факту є наявність шкідливого простору та ущільнень між пластинами насосів. Якщо ж необхідно отримати вакуум з меншим тиском, то використовують вакуумні нососи, робота яких грунтується на інших фізичних явищах, таких як внутрішнє тертя(в’язкість) або дифузія газів. У відповідності з молекулярно–кінетичною теорією ці явища обумовлені передачею імпульсу від молекул, що знаходяться в більш рухливому шарі струменя, молекулам шару, який рухається повільніше, а тепловий рух призводить до змішування молекул сусідніх шарів. Насоси, в яких використовується в’язкість газів, називаються пароструминними, а при використанні дифузії – дифузійними. Головними елементами таких насосів є: 1) сопло; 2) робоча рідина; 3) нагрівач; 4) охолоджувач.

Рівняння Бернуллі. Якщо робоча речовина(рідина, чи її пара) переміщується через трубку зі змінним поперечним перерізом(див. рис.1 ), то виникає різниця тисків, яку можна визначити за рівнянням Бернуллі:

,

Рис.1

       
   
 

Рис.2 де – густина робочої речовини, та – швидкості в перерізі , відповідно.

Як видно із залежності тиску уздовж трубки (рис.1), у місці звуження тиск понижений. Якщо приєднати до цього місця відкачувальну камеру, то газ, що знаходиться там, почне рухатися разом з рідиною в результаті захоплення струменем робочої речовини з причини внутрішнього тертя. Робочою речовиною може бути вода або її пара, чи пара спеціального вакуумного масла.

Насоси, в яких робочою рідиною є вода, називаються водоструминними (рис.2). Водоструминні насоси мають граничний тиск ~ 5 тор. Це високий тиск, що відповідає низькому вакууму, але позитивною якістю таких насосів є велика швидкодія ~ 0,1л/с і проста конструкція.

Для отримання більш високого вакууму і великої швидкодії використовують пароежекторні насоси. Одним з головних елементів цих насосів є ежектор. Ежектор – це надзвукове сопло, що розширюється по довжині(див. рис.3). Струмінь пари, що виходить з сопла 1, потрапляє в камеру 2, де розширюється. Форму сопла вибирають таку, щоб пара, яка виходить з нього, мала швидкість більшу ніж швидкість звука. На межі струменя виникає турбулентний шар, де молекули пари інтенсивно перемішуються з молекулами газу відкачувальної камери і отримують імпульс в напрямі руху струменя. Парогазова суміш з камери змішування 2 потрапляє до дифузора 3, що розширюється і де швидкість потоку зменшується, а тиск збільшується. Насос з ежектором має велику швид

 
 

кодію (50 –100 л/с) в межах тиску тор, тобто в області, де обертові пластинчаті насоси мають граничний тиск.

Рис.3

У зв’язку з цим ежекторні насоси розміщують між високовакуумним і насосом попереднього вакууму, а для отримання ще меншого тиску їх роблять багатоступінчастими, тоді граничний тиск знижується до тор. До недоліку слід віднести залежність швидкодії насоса від тиску газу. В дифузійних насосах зниження тиску виникає в результаті дифузії молекул газу, що знаходиться у вакуумній камері, з молекулами струменя пари робочої рідини. Швидкодія дифузійного насоса не залежить від тиску газу, що вигідно відрізняє його від ежекторного. Для створення струменя пари використовують нагрівач робочої рідини, а щоб не виникали витрати пари, застосовують холодильник, на стінках якого пара робочої рідини конденсується і стікає до резервуару. Молекули газу, захоплені струменем пари, скупчуються біля випускного патрубка. Таким чином біля випускного патрубка тиск газу, що відкачується, стає більшим ніж тиск у камері відкачки. Щоб не виникав зворотний рух молекул до камери, на випускному патрубку необхідно зробити тиск нижчий, ніж тиск скупчених молекул за допомогою насоса попереднього вакууму. Отже дифузійні насоси, як і пароструминні, не працюють без додаткових(обертових) насосів, причому за допомогою останніх треба створити тиск менший ніж тиск, що створюється дифузійним насосом, чи пароструминним на випускному патрубку, тобто граничний тиск обертових насосів обов’язково повинен бути нижчим за випускний тиск високовакуумного насоса.

Типова залежність швидкодії дифузійного насоса від тиску наведена на рис.4.

Рис. 4

 

Процес дифузії газу в струмінь пари не залежить від тиску на випускному патрубку, тому швидкодія насоса в широких межах залишається постійною. Зменшення швидкодії при низькому тиску(відрізок ab) обумовлене головним чином зворотною дифузією газу через струмінь пари, а при високому тиску(відрізок cd) – відривом струменя від стінок насоса, що супроводжується перетіканням газу від випускного патрубка до вакуумної камери.

 

Вимоги до робочої рідини пароструминних та дифузійних насосів

До робочої рідини насосів ставлять такі вимоги: 1) вона повинна мати якомога меншу пружність пари при кімнатній температурі і якомога більшу – при температурі кипіння; 2) бути стійкою до розкладання на фракції при нагріванні; 3) якомога менше розчиняти гази; 4) хімічно не реагувати з газами, що відкачуються і з конструктивними матеріалами насосу; 5) мати малу теплоту пароутворення.

Вибрати рідину, яка б задовольняла всі ці вимоги, складно.

У вітчизняних високовакуумних насосах використовують три типи масел: нафтового походження(вазелінові масла ВМ–1, ВМ–2,ВМ–5); складні ефіри органічних кислот(октойлі ОФ і ОС – ізооктилові ефіри фталевої і себацинової кислот) і силіконові (кремнійорганічні з’єднання марок ВКЖ–94А і ВКЖ–94Б).

Вазелінові масламають низьку пружність пари ( тор при С), але вони не стійкі до термоокислювальних процесів, а також неоднорідні за складом. Вони є сумішшю фракцій з різною молекулярною вагою і з цієї причини не мають визначеної точки кипіння. При перегріві масло розкладається і в робочій рідині з’являються легкі фракції, що призводить до збільшення граничного тиску насоса. При взаємодії з атмосферним повітрям гаряче масло окислюється і утворюється смолянистий наліт на внутрішніх деталях насоса, який важко видалити.

Октойлі мають підвищену пружність пари ( тор при С) у порівнянні з вазеліновим маслом, але вони не є сумішшю різних фракцій. Недоліками октойлів є низька термічна і окислювальна стійкість, а також нестійкість до взаємодії з вологою.

Силіконові масла мають високу термоокислювальну стійкість і смолистих відкладень на внутрішніх поверхнях насосів при окислинні не утворюється. Вони стійкі при робочій температурі до взаємодії з атмосферним повітрям. Пружність пари вітчизняних силіконових масел досягає тор при С.

Загальним недоліком усіх вакуумних масел є розчинність газів, можливість розкладання і в зв’язку з цим обмеженість терміну використання, непостійність параметрів у процесі роботи внаслідок неоднорідності складу.

Будова і принцип роботи металевого дифузійного насоса ММ-40А

 

 

Дифузійний насос ММ-40А є двоступінчастим, його поздовжній розріз наведено на рис. 5. Конструктивно насос складається з трьох коаксіально розміщених металевих циліндричних паропроводів. Два внутрішніх циліндри з одного кінця мають сопло, а другий кінець занурений в резервуар з робочою рідиною(вакуумним маслом). Зовнішній циліндр приєднується відкритим кінцем до відкачувальної камери, а частина його поверхні охоплена камерою водяного охолодження.

 

Рис. 5

 

Пара, що утворюється при нагріванні в резервуарі 1, який ще називають загальним випарником робочої рідини (вакуумне масло), потрапляє до дифузійних сопел 12, 13 через самостійні канали. До верхнього сопла вона потрапляє через перший внутрішній циліндр-паропровід 6, тоді як до нижнього – через другий циліндр 3, до якого пара надходить через кільцеву щілину, що створена між ними в розширенні циліндру 3. Між корпусом насоса (зовнішній циліндр) 5 і другим циліндром створена камера 20 у вигляді вузької кільцевої щілини, куди стікає масло після конденсації на внутрішній поверхні охолоджувача 13. Насос охолоджується водою, що підводиться під тиском обов’язково до патрубку 7 і відводиться через патрубок 8. Вода повинна бути чистою, щоб при експлуатації не засмічувати осадками охолоджувач, який є вузьким проміжком між корпусом насоса і водяною оболонкою. З камери 20 масло перетікає через невеликі отвори до камери 21, а потім таким же чином до камери 19 і, нарешті, до центральної камери 18 загального для всіх камер випарника-резервуара 1. Камери 19, 21 відокремлені спеціальним розподільним циліндром 2 у вигляді стакана з невеликими отворами в нижній частині для перетікання масла. За такої будови насоса виникає розгонка масла при нагріванні, тобто відокремлення легких фракцій масла, спочатку розрідження газу буде створюватись першим ступенем насоса під дією струменя пари легких фракцій масла з сопла 14, а потім другим ступенем під дією струменя пари більш важких фракцій масла з верхнього сопла 12. Такий насос може працювати з менш стійким маслом і забезпечувати порівняно достатній граничний тиск. Щоб зменшити зворотній потік пари масла, що нагрівається в камері 20, над нею встановлені манжети 17, і розміщені дещо нижче отвору 16 випускного патрубка 15. Для зменшення граничного тиску між впускним отвором насоса 10 і високо вакуумним соплом 12 розміщений дефлектор 11. Потік пари масла, що потрапляє на поверхню дефлектора, віддзеркалюється, а також частково конденсується, це зменшує проникнення його до вакуумної системи. Нагрівання масла виконується плоским нагрівачем-електроплиткою 22 з відкритою спіраллю. Центральна частина випарника, де скупчуються найбільше важкі фракції масла, повинна нагріватися дещо більше, ніж інші частини. З цією метою у випарнику розміщують металеву шайбу, що має посередині виїмку. Розігрівається насос, тобто виходить на робочий режим через 20-25 хв. після підключення нагрівача. Спочатку роботи насоса може виникати інтенсивне газовиділення з масла, але через 20-40 хв. насос починає працювати на повну потужність. Щоб запобігти газовиділенню, потрібно після вимикання нагрівача утримувати насос під вакуумумом. Закріплюється насос спеціальною полицею 9 .

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.