Edited by Andrew Irving
Из книги Truth in Mathematics. Oxford, 1998.
Edited by H.G.Dales and G. Oliveri.
1. Truth and Foundation of Mathematics
Dag Prawitz
2.On founding the theory of algorithms
Yiannis N. Moschovakis
3.Truth and knowability: on the principles C and K of Michael Dummett
Per Martin-Lof
4. Logical completeness, truth, and proofs
Gabriele Lolli
5. Mathematics as language
Edward G. Effros
6.Truth, rigour, and common sense
Yu. I. Manin
7. How to be a naturalist about mathematics
Penelope Maddy
8.The mathematician as a formalist
H. G. Dales
9. A credo of sorts
V. F. R. Jones
10. Mathematical evidence
Donald A. Martin
11. Mathematical definability
Theodore A. Slaman
12. True to the pattern
Gianluigi Oliveri
13. Foundations of set theory
W. W. Tait
14. Which undecidable mathematical sentences have
determinate truth values?
Hartry Field
15. Two conceptions of natural number
Alexander George and Daniel J. Velleman
16. The tower of Hanoi
W. Hugh Woodin
Из книги The Oxford Handbook on the Philosophy of Mathematics, Oxford University Press, 2005.
1. Philosophy of Mathematics and Its Logic: Introduction, 3
Stewart Shapiro
2. Apriority and Application: Philosophy of Mathematics in the
Modern Period, 28
Lisa Shabel
3. Later Empiricism and Logical Positivism, 51
John Skorupski
4. Wittgenstein on Philosophy of Logic and Mathematics, 75
Juliet Floyd
5. The Logicism of Frege, Dedekind, and Russell, 129
William Demopoulos and Peter Clark
6. Logicism in the Twenty-first Century, 166
Bob Hale and Crispin Wright
7. Logicism Reconsidered, 203
Agustıın Rayo
8. Formalism, 236
Michael Detlefsen
9. Intuitionism and Philosophy, 318
Carl Posy
10. Intuitionism in Mathematics, 356
D. C. McCarty
11. Intuitionism Reconsidered, 387
Roy Cook
12. Quine and the Web of Belief, 412
Michael D. Resnik
13. Three Forms of Naturalism, 437
Penelope Maddy
14. Naturalism Reconsidered, 460
Alan Weir
15. Nominalism, 483
Charles Chihara
16. Nominalism Reconsidered, 515
Gideon Rosen and John P. Burgess
17. Structuralism, 536
Geoffrey Hellman
18. Structuralism Reconsidered, 563
Fraser MacBride
19. Predicativity, 590
Solomon Feferman
20. Mathematics—Application and Applicability, 625
Mark Steiner
21. Logical Consequence, Proof Theory,
and Model Theory, 651
Stewart Shapiro
22. Logical Consequence From a Constructivist
Point of View, 671
Dag Prawitz
23. Relevance in Reasoning, 696
Neil Tennant
24. No Requirement of Relevance, 727
John P. Burgess
25. Higher-order Logic, 751
Stewart Shapiro
26. Higher-order Logic Reconsidered, 781
Ignacio Janeґ
Из книги 18 Unconventional Essays on the Nature of Mathematics, New York, 2006
Ed. by Reuben Hersh.
1. A Socratic Dialogue on Mathematics ............ 1
Alfrеd Rеnyi
2 “Introduction” to Filosofia of matematica........................................................... 17
Carlo Cellucc
3. On Proof and Progress in Mathematics ........ 37
William P. Thurston
4. The Informal Logic of Mathematical Proof ....... 56
Andrew Aberdein
5.Philosophical Problems of Mathematics in the Light
of Evolutionary Epistemology........................................................................... 71
Yehuda Rav
6. Towards a Semiotics of Mathematics .............................. 97
7. Computers and the Sociology of Mathematical Proof....................................... 128
Donald MacKenzie
8. From G.H.H. and Littlewood to XML and Maple:
Changing Needs and Expectations in Mathematical Knowledge Management....... 147
Terry Stanway
9. Do Real Numbers Really Move? Language, Thought, and Gesture:
The Embodied Cognitive Foundations of Mathematics ...... 160
Rafael Nъсez
10. Does Mathematics Need a Philosophy? ........................ 182
William Timothy Gowers
11.How and Why Mathematics Is Unique as a Social Practice .............................. 201
Jody Azzouni
12. The Pernicious Influence of Mathematics upon Philosophy.............................. 220
Gian-Carlo Rota
13.The Pernicious Influence of Mathematics on Science........................................ 231
Jack Schwartz
14.What Is Philosophy of Mathematics Looking for? ............................................ 236
Alfonso C. Бvila del Palacio
15.Concepts and the Mangle of Practice Constructing Quaternions...................... 250
Andrew Pickering
16.Mathematics as Objective Knowledge and as Human Practice.......................... 289
Eduard Glas
17.The Locus of Mathematical Reality:
An Anthropological Footnote ................. 304
Leslie A. White
18.Inner Vision, Outer Truth.................................................................................. 320
Reuben Hersh
Из книги Philosophy of Mathematics. Amsterdam,2009
Edited by Andrew Irving.
1.Realism and Anti-Realism in Mathematics 35
Mark Balaguer
2. Aristotelian Realism 103
James Franklin
3. Empiricism in the Philosophy of Mathematics 157
David Bostock
4. A Kantian Perspective on the Philosophy of Mathematics 231
Mary Tiles
5. Logicism 271
Jaakko Hintikka
6. Formalism 291
Peter Simons
7. Constructivism in Mathematics 311
Charles McCarty
8. Fictionalism 345
Daniel Bonevac
9. Set Theory from Cantor to Cohen 395
Akihiro Kanamori
10. Alternative Set Theories 461
Peter Apostoli, Roland Hinnion, Akira Kanda and
Thierry Libert
11. Philosophies of Probability 493
Jon Williamson
12, On Computability 535
Wilfried Sieg
13. Inconsistent Mathematics 631
Chris Mortensen
14. Mathematics and the World 651
Mark Colyvan
Поиск по сайту:
|