Для синтеза мононуклеотидов de novo необходимы очень простые вещества: CO2 и рибозо-5-фосфат (продукт 1-го этапа ГМФ-пути). Синтез происходит с затратой АТФ. Кроме этого, необходимы заменимые аминокислоты, которые синтезируются в организме, поэтому даже при полном голодании синтез нуклеиновых кислот не страдает.
РОЛЬ АМИНОКИСЛОТ В СИНТЕЗЕ МОНОНУКЛЕОТИДОВ
1) Аспарагин. Является донором амидной группы.
2) Аспарагиновая кислота.
а) Является донором аминогруппы
б) Участвует в синтезе всей молекулой.
Глицин
а) Является донором активного С1.
б) Участвует в синтезе всей молекулой.
4) Серин. Является донором активного С1.
ПЕРЕНОС ОДНОУГЛЕРОДНЫХ ФРАГМЕНТОВ
В организме человека существуют ферменты, которые могут извлекать из некоторых аминокислот С1-группу. Такие ферменты являются сложными белками. В качестве кофермента содержат производное витамина ВС – фолиевой кислоты. Фолиевой кислоты много в зеленых листьях, к тому же, этот витамин синтезируется микрофлорой кишечника. В клетках организма фолиевая кислота (ФК) дважды восстанавливается (к ней присоединяется водород) с участием фермента НАДФ.Н2-зависимой редуктазы, и превращается в тетрагидрофолиевую кислоту (ТГФК).
Активный С1 извлекается из глицина или серина.
В каталитическом центре фермента, содержащего ТГФК, имеются две –NH-группы, которые участвуют в связывании активного С1. Схематически процесс можно представить так:
НАДН2, который образуется в обратной реакции, может быть использован для восстановления пирувата в лактат (гликолитическая оксидоредукция). Реакция катализируется ферментом глицинсинтетазой. После этого метилен-ТГФК отделяется от белковой части фермента, и затем возможны два варианта ее превращений:
1) Метилен-ТГФК может стать небелковой частью ферментов синтеза мононуклеотидов.
2) Метиленовая группировка может видоизменяться до:
Эти группировки связаны только с одним из атомов азота ТГФК, но тоже могут стать субстратами для синтеза мононуклеотидов.
Поэтому любая из группировок, связанная с ТГФК, называется активным С1.
Для синтеза любого из нуклеотидов требуется активная форма рибозо-фосфата - фосфорибозилпирофосфат (ФРПФ), образующаяся в следующей реакции:
Фосфорибозилпирофосфаткиназа (ФРПФ-киназа) является ключевым ферментом для синтеза всех мононуклеотидов. Ингибируется этот фермент по принципу отрицательной обратной связи избытком АМФ и ГМФ. При генетическом дефекте ФРПФ-киназы наблюдается потеря чувствительности фермента к действию своих ингибиторов. В результате возрастает продукция пуриновых мононуклеотидов, а, значит, и скорость их разрушения, что приводит к увеличению концентрации мочевой кислоты – наблюдается подагра.
После образования ФРПФ реакции синтеза пуриновых и пиримидиновых мононуклеотидов различны.
ПРИНЦИПИАЛЬНЫЕ РАЗЛИЧИЯ В СИНТЕЗЕ ПУРИНОВЫХ И ПИРИМИДИНОВЫХ МОНОНУКЛЕОТИДОВ:
Особенностью синтеза пуриновых нуклеотидов является то, что циклическая структура пуринового азотистого основания постепенно достраивается на активной форме рибозо-фосфата, как на матрице. При циклизации получается уже готовый пуриновый мононуклеотид.
При синтезе пиримидиновых мононуклеотидов сначала образуется циклическа структура пиримидинового азотистого основания, которая в готовом виде переносится на рибозу – на место пирофосфата.
СИНТЕЗ ПУРИНОВЫХ МОНОНУКЛЕОТИДОВ (АМФ и ГМФ)
Существует 10 общих и 2 специфических стадии. В результате общих реакций образуется пуриновый мононуклеотид, являющийся общим предшественником будущих АМФ и ГМФ – инозинмонофосфат (ИМФ). ИМФ в качестве азотистого основания содердит гипоксантин.
Пуриновое кольцо строится из СО2, аспарагиновой кислоты, глутамина, глицина и серина. Эти вещества либо полностью включаются в пуриновую структуру, или передают для ее построения отдельные группировки.
Аспарагиновая кислота отдает аминогруппу и превращается в фумаровую кислоту.
Глицин: 1) полностью включается в структуру пуринового азотистого основания; 2) является источником одноуглеродного радикала.
Серин: тоже является донором одноуглеродного радикала.
Фермент, который катализирует эту реакцию, называется фосфорибозиламидотрансфераза. Он является ключевым ферментом синтеза всех пуриновых мононуклеотидов. Регулируется по принципу отрицательной обратной связи. Аллостерическими ингибиторами этого фермента являются АМФ и ГМФ.
На второй стадии фосфорибозиламин взаимодействует с глицином.
Третья стадия - включение углеродного атома, донором которого является глицин или серин.
Затем достраивается шестичленный фрагмент пуринового кольца:
4-ая стадия - карбоксилирование с помощью активной формы СО2 при участии витамина Н - биотина.
5-ая стадия - аминирование с участием аминогруппы из аспартата.
6-ая стадия - аминирование за счет аминогруппы глутамина.
7-ая, заключительная стадия - включение одноуглеродного фрагмента (с участием ТГФК), и образуется готовый ИМФ.
Затем протекают специфические реакции, в результате которых ИМФ превращается либо в АМФ, либо в ГМФ. При таком превращении в молекуле появляется аминогруппа, причем в случае превращения в АМФ - на месте ОН-группы. При образовании АМФ источником азота является аспарагиновая кислота, а для образования ГМФ необходим глутамин.
Далее из НМФ образуются НДФ и НТФ с помощью АТФ. Затраты АТФ на синтез нуклеотидов de novo очень велики. Этот способ синтеза является энергетически невыгодным.
В некоторых тканях есть альтернативный способ синтеза – реутилизация (повторное использование) пуриновых азотистых оснований, которые образовались при распаде нуклеотидов.
Ферменты, катализирующие реакции реутилизации, наиболее активны в быстроделящихся клетках (эмбриональные ткани, красный костный мозг, раковые клетки), а также в тканях головного мозга. На схеме видно, что фермент гуанингипоксантинФРПФтрансфераза обладает более широкой субстратной специфичностью, чем аденинФРПФтрансфераза – помимо гуанина, может переносить и гипоксантин - образуется ИМФ. У человека встречается генетический дефект этого фермента - “болезнь Леша-Нихана”. Для таких больных характерны выраженные морфологические изменения в головном и костном мозге, умственная и физическая отсталость, агрессия, аутоагрессия. В эксперименте на животных синдром аутоагрессии моделируется путем скармливания им кофеина (пурина) в больших дозах, который ингибирует процесс реутилизации гуанина.