Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Вывод рабочей формулы

Государственное образовательное учреждение высшего профессионального образования

Санкт-Петербургский государственный горный институт имени Г.В. Плеханова (технический университет)

Кафедра Общей и технической физики

(лаборатория виртуальных экспериментов)

Определение

Показателя адиабаты при адиабатическом расширении газа

Методические указания к лабораторной работе № 8

Для студентов всех специальностей

 

 

САНКТ-ПЕТЕРБУРГ

2010

УДК 531/534 (075.83)

 

 

СТАТИСТИЧЕСКАЯ ФИЗИКА И ТЕРМОДИНАМИКА: Лабораторный практикум курса общей физики. Смирнова Н.Н., Фицак В.В. Чернобай В.И. / Санкт-Петербургский горный институт. С-Пб, 2010, 14 с.

 

 

Лабораторный практикум курса общей физики по статистической физике и термодинамике предназначен для студентов всех специальностей Санкт-Петербургского горного института.

С помощью учебного пособия студент имеет возможность, в предварительном плане, ознакомиться с физическими явлениями, методикой выполнения лабораторного исследования и правилами оформления лабораторных работ.

Выполнение лабораторных работ практикума проводится студентом индивидуально по графику.

 

 

Табл. 3. Ил. 2. Библиогр.: 5 назв.

 

Научный редактор доц. Н.Н. Смирнова

 

  © Санкт-Петербургский горный институт им. Г.В. Плеханова, 2010 г.    

 

 

Цель работы: – изучить законы идеального газа и основные положения классической теории теплоёмкости; определить коэффициент Пуассона g - отношение теплоёмкости при постоянном давлении Ср к теплоемкости при постоянном объеме CV методом адиабатического расширения (методом Клемана - Дезорма).

 

Общие сведения

Количество тепла, которое необходимо сообщить одному молю вещества, чтобы повысить его температуру на 1 К, называют молярной теплоемкостью.

где Q – количество тепла, подводимого к системе, Т – абсолютная температура, M – масса газа, m – масса одного моля газа.

Как показывают теория и опыт, теплоемкость зависит от условий, при которых нагревается газ, т.е. от характера термодинамического процесса.

Теплоёмкость газа при постоянном давлении (Сp) больше теплоёмкости при постоянном объёме (Cv). Это легко показать качественно на основании первого начала термодинамики: количество тепла Q, подводимого к системе, идет на увеличение внутренней энергии системы DU и на совершение этой системой работы A над внешними телами.

Q=dU+A (1)

Если газ нагревается при постоянном объеме, то работа не совершается и все подводимое тепло идет на увеличение запаса его внутренней энергии U, т.е. только на повышение температуры газа. Если же газ нагревается при постоянном давлении, он расширяется и производит работу, требующую дополнительного расхода тепла. Таким образом, для повышения температуры газа на определённую величину в изобарном процессе требуется большее количество теплоты, чем при изохорном.

 

Как следует из теории

Cp = CV + R (2)

где R – универсальная газовая постоянная.

Выражение (2) носит название соотношения Р.Майера.

Отношение g=Ср/CV входит в уравнение Пуассона, описывающее адиабатический процесс, т.е. процесс, идущий без теплообмена с окружающей средой (Q = 0):

. (3)

Здесь p1 и V1 - давление и объем газа в первом состоянии; p2 и - давление и объем газа во втором состоянии .

Полную теплоизоляцию газа от внешней среды осуществить невозможно. Однако, если параметры состояния газа изменяются очень быстро, процесс можно приближенно считать адиабатическим. На практике адиабатический процесс совершается в некоторых тепловых двигателях (например, в двигателе Дизеля); распространение звука в газах (быстрое периодическое изменение давления в малых областях пространства) также протекает адиабатически.

 

Экспериментальная установка

Схема установки показана на рисунке 1. Установка состоит из стеклянного сосуда 1, баллона 8 с редуктором 9, со сжатым воздухом и U – образного жидкостного манометра 7 с цифровыми табло 5 и 6. Имеется также два крана – впускной кран 10, служащий для напуска газа в сосуд 1 из баллона 8 по магистрали 4, и выпускной кран 5 для соединения сосуда с атмосферой.

 
 


Вывод рабочей формулы.

Рассмотрим метод Клемана – Дезорма. Напустим воздух в стеклянный сосуд 1 (см. рисунок) т.е. откроем и закроем кран 10. При быстром сжатии температура воздуха повышается. Поэтому после прекращения напуска разность уровней жидкости в манометре будет постепенно уменьшаться, пока температура воздуха внутри сосуда не сравняется с температурой окружающего воздуха. Назовем состояние воздуха в сосуде после выравнивания температур состоянием 1. Параметры состояния 1: V1 - объем единицы массы воздуха; t1 - температура воздуха; р1 - давление в сосуде.

Откроем кран 3и, как только давление в сосуде сравняется с атмосферным, закроем его. Так как расширение происходит очень быстро, то процесс близок к адиабатическому и, следовательно, температура понизится до t2. Объем единицы массы воздуха станет равным V2. Воздух, оставшийся в сосуде, перейдет в состояние 2 с параметрами V2, t2, р22 –атмосферное давление). Так как температура t2 меньше наружной, то воздух в сосуде будет постепенно нагреваться (вслед­ствие теплообмена с окружающей средой) до температуры окружающего воздуха t1. Это нагревание происходит изохорически, так как кран закрыт. Давление воздуха в сосуде увеличивается по сравнению с атмосферным, и в манометре возникает разность уровней h2, т.е. воздух переходит в состояние 3 с параметрами V2, t1, р3.

Таким образом, мы имеем три состояния газа со следующими параметрами:

Состояние Параметр
Объем V1 V2 V2
Температура t1 t2 t1
Давление p1 p2 p3

 

В состояниях 1 и 3 воздух имеет одинаковую температуру, следовательно, параметры этих состояний можно связать уравнением изотермического процесса (уравнением Бойля – Мариотта):

или (4)

Переход от состояния 1 к состоянию 2 происходит адиабатически, поэтому параметры их связаны уравнением Пуассона (3):

или (5)

Из уравнений (4) и (5) получим

(6)

 

Прологарифмировав равенство (6), получим

, (7)

 

Если давление измерять жидкостным манометром, то вместо р можно писать соответствующую высоту жидкости. Тогда можно ввести обозначения

где H – атмосферное давление, h1 – разность уровней манометра в первом состоянии, h2 – разность уровней в третьем состоянии.

Тогда выражение (7) можно переписать в виде

Так как величины h1 и h2, выраженные в миллиметрах ртутного столба, очень малы по сравнению с Н и, следовательно, дроби h1/H и (h1 - h2)/(H + h2) также незначительны, для нахождения величины логарифма можно воспользоваться приближенным выражением

,

где х - малая величина.

Поскольку х2 и, тем более, х3 - величины высших порядков малости, ими можно пренебречь, тогда lg(1+ x) @ x и, следовательно,

Пренебрегая величиной h2 в сумме H + h2, получим расчетную формулу

 

. (8)

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.