С помощью уравнения состояния идеального газа можно исследовать процессы, в которых масса газа и один из трех параметров — давление, объем или температура — остаются неизменными. Количественные зависимости между двумя параметрами газа при фиксированном значении третьего параметра называют газовыми законами.
Газ не сохраняют ни форму, ни объем. Характер молекулярного движения в газах – беспорядочное (хаотическое) движение.
Когда в газе происходят какие-либо процессы, то обычно изменяются все три его параметра: p, V, T. Естественно, что наиболее просты такие процессы, которые протекают при изменении только двух параметров, а третий остается постоянным.
Процессы, протекающие при неизменном значении одного из параметров, называют изопроцессами. Правда, в действительности ни один процесс не может протекать при строго фиксированном значении какого-либо параметра. Всегда имеются те или иные воздействия, нарушающие постоянство температуры, давления или объема. Лишь в лабораторных условиях удается поддерживать постоянство того или иного параметра с хорошей точностью, но в действующих технических устройствах и в природе это практически неосуществимо. Изопроцесс - это идеализированная модель реального процесса, которая только приближенно отражает действительность.
Уравнение состояние идеального газа
Состояния данной массы газа характеризуется тремя макроскопическими параметрами: давлением, объемом, температурой. В данной главе рассмотрим между ними связь, а затем посмотрим, для чего эта связь нужна.
Уравнение состояния идеального газа – называется такое уравнение, которое связывает три макроскопических параметра давление P, объем V и температуру T, для достаточно разряженного газа.
Выведем уравнение состояния идеального газа. Для этого подставим в уравнение:
(1)
выражение для концентрации молекул газа
можно записать так:
(2)
где
-постоянная Авогадро, m – масса газа, M – его молярная масса.
После подстановки (2) в (1) будем иметь
(3)
где k – постоянная Больцмана. Произведение постоянной Больцмана k и постоянной Авогадро
называется универсальной (молярной) газовой постоянной и обозначается буквой R.
Подставим универсальную газовую постоянную в уравнение (3), получим уравнение состояния для произвольной массы идеального газа:
(4)
Единственная величина в этом уравнении (4), зависящая от рода газа, это его молярная масса.
Уравнение (4) называется уравнение состояния идеального газа или уравнение Менделеева – Клапейрона.
Из уравнения состояния вытекает связь между давлением, объемом и температурой идеального газа, который может находиться в двух любых состояниях.
Если индекс 1 обозначить параметры, относящиеся к первому состоянию, а индекс 2 - параметры, относящиеся ко второму состоянию, то согласно уравнению (4) для газа данной массы:
Правые части этих уравнений одинаковы, следовательно, должны быть равны и их левые части:
(5)
Уравнение состояние в форме (5) называется уравнением Клапейрона и представляет собой одну из форм записи уравнения состояния.
Таким образом, для данной массы газа, как бы ни менялись его давление, объем и температура, произведение давления на объем, деленное на абсолютную температуру, есть величина постоянная.