Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Сравнение бесконечно больших функций



На первом уроке мы вычислили три предела с неопределённостью :

В перечисленных примерах используется стандартный приём деления числителя и знаменателя на «икс» в старшей степени и всё расписывается подробно. Но правильный ответ легко выяснить ещё до решения!

В первом примере в числителе и знаменателе МЫСЛЕННО отбрасываем все младшие слагаемые:
.

В таких случаях говорят, что функции числителя и знаменателя обладают одинаковым порядком роста. Или короче – числитель и знаменатель одного порядка роста. Действительно, в данном пределе и вверху, и внизу находятся квадратичные функции. Мир, равенство, братство.

Во втором примере аналогично – в числителе и знаменателе МЫСЛЕННО уберём всех малышей:

Здесь знаменатель более высокого порядка, чем числитель. Многочлен 4-ой степени растёт быстрее кубической функции и «перетягивает» предел на ноль.

И, наконец, в пределе карлики тоже идут лесом:

А в этом примере всё наоборот – числитель более высокого порядка, чем знаменатель. Квадратичная функция растёт быстрее линейной и «перетягивает» предел на «плюс бесконечность».

Сделаем краткую теоретическую выжимку. Рассмотрим две произвольные функции , которые определены на бесконечности.

1) Если , где – ненулевая константа, то функции имеют одинаковый порядок роста. Если , то функции называют эквивалентными на бесконечности.

2) Если , то функция более высокого порядка роста, чем .

3) Если , то функция более высокого порядка роста, чем .

! Примечание: при суть выкладок не меняется.

Подчеркиваю ещё раз, что данные факты относятся к произвольным функциям, определённым на бесконечности, а не только к многочленам. Но у нас ещё непаханое поле полиномов, поэтому, продолжаем работать с ними… да вы не грустите, для разнообразия я добавлю корней =)

Пример 1

Найти предел

В наличии неопределённость и приём решения уже знаком – нужно разделить числитель и знаменатель на «икс» в старшей степени.

Старшая степень числителя равна двум. Знаменатель…. Как определить старшую степень, если многочлен под корнем? МЫСЛЕННО отбрасываем все слагаемые, кроме самого старшего: . Константу тоже отбрасываем и выясняем старшую степень знаменателя: . Она тоже равна двум. Таким образом, числитель и знаменатель одного порядка роста, а значит, предел равен конечному числу, отличному от нуля.

Почему бы сразу не узнать ответ? В числителе и знаменателе МЫСЛЕННО отбрасываем все младшие слагаемые: . Таким образом, наши функции не только одного порядка роста, но ещё и эквивалентны на бесконечности.

Оформляем решение:

Разделим числитель и знаменатель на

В действительности пару шагов можно пропустить, просто я подробно расписал, как в знаменателе под корень вносится .

Пример 2

Найти предел

Это пример для самостоятельного решения. Постарайтесь провести рассуждения по образцу первого примера. Также заметьте, что здесь неопределённость , что необходимо отразить в решении. Примерный образец чистового оформления примера в конце урока.

Во избежание недочёта, всегда анализируйте, какая неопределённость получается в пределах рассматриваемого вида. Помимо неопределённости может встретиться неопределённость либо . Во всех четырёх случаях числитель и знаменатель необходимо разделить на «икс» в старшей степени.

Пример 3

Найти предел

Слишком трудный предел? Лёгкий испуг от хлопушки. Главное, грамотно управиться с радикалами.

Проведём предварительный анализ:

Сначала выясним старшую степень числителя. Там сумма двух корней. Под корнем отбросим младшее слагаемое: и уберём константу: . Под корнем отбросим все младшие слагаемые: .
, значит, старшая степень числителя: .

Разбираемся с нижним этажом. Под корнем отбрасываем константу: . У многочлена старшая степень равна двум.
, значит, старшая степень знаменателя: .
Кстати, заметьте, что корень более высокого порядка роста, чем , поэтому весь знаменатель будет стремиться к «плюс бесконечности».

Сравниваем старшие степени: , следовательно, числитель более высокого порядка роста, чем знаменатель, и сразу можно сказать, что предел будет равен бесконечности.

Оформляем решение, я распишу его максимально подробно:

Разделим числитель и знаменатель на «икс» в старшей степени: :


Действия в числителе прозрачны, закомментирую знаменатель. У дроби «разнокалиберные» корни, и квадратный корень необходимо «подогнать» под кубический корень . Составим и решим уравнение: . Таким образом: .

Ну и на всякий случай напоминаю формулу , по которой выполняется деление:

Другие члены знаменателя:

Правила действий с корнями можно найти на странице Математические формулы и таблицы в методичке Горячие формулы школьного курса математики. Также на действиях с радикалами я подробно останавливался при нахождении производных.

Пример 4

Найти предел

Это более простой пример для самостоятельного решения. В предложенном примере снова неопределённость ( более высокого порядка роста, чем корень ).

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.