Эндоплазматическая сеть, аппарат Гольджи, лизосомы и вакуоли образуют единую вакуолярную сеть клетки, отдельные элементы которой могут переходить друг в друга
4. Подготовка докладов и сообщений: «Открытие вирусов в организме»
«Структура вирусов, генетический аппарат вирусов, оболочка вирусов, жизненный цикл вируса».
5. Подготовка к тестированию по теме: «Строение клетки»
Занятие №6
Тема: «Органоиды клетки».
1. Одномембранные органоиды.
2. Двумембранные органоиды.
3. Немебранные органоиды.
Различают:
1.Мембранные органоиды — имеющие мембранное строение, причем они могут быть
а)одномембранными: эндоплазматическая сеть, аппарат Гольджи, лизосомы, вакуоли
б) двумембранными: митохондрии, пластиды, ядро
2.Не имеющие мембранного строения—хромосомы, рибосомы, клеточный центр, центриоли, реснички и жгутики, микротрубочки
Одномембранные:
Эндоплазматическая сеть (ЭПС) — одномембранный органоид, представляет собой ажурную конструкцию из соединенных полостей, канальцев и трубочек,пронизывающих цитоплазму клетки. Она образована мембраной, сходной по строению с ПМ. Трубочки и полости ЭПС могут занимать до 50% объема клетки и нигде не обрываются и не открываются в цитоплазму. Мембраны с одной стороны связаны с цитоплазматической мембраной, с другой — с наружной ядерной мембраной.
Различают два вида мембран ЭПС:
1)Шероховатую– содержит на своей поверхности рибосомы. Именно здесь синтезируется большинство белков. Шероховатая сеть лучше развита в тех клетках, которые синтезируют белки для нужд всего организма (например, белковые гормоны)
2) Гладкую - мембраны которой рибосом не несут. На поверхности гладкой ЭПС идет синтез углеводов и липидов. Развита в тех клетках, которые синтезируют, к примеру, сахара и липиды. В гладкой ЭПС, кроме того, накапливаются ионы кальция — важные регуляторы всех функций клеток и целого организма.
1) транспорт веществ из одной части клетки в другую,
2) разделение цитоплазмы клетки на компраменты («отсеки»),
3) синтез углеводов и липидов (гладкая ЭПС),
4) синтез белка (шероховатая ЭПС),
5) место образования аппарата Гольджи.
Аппарат Гольджи, или комплекс Гольджи, — одномембранный органоид. Описан в 1889 году. Аппарат Гольджи обычно расположен около клеточного ядра (в животных клетках часто вблизи клеточного центра). При специальной окраске различим в оптическом микроскопе (имеет вид сетчатой структуры). Состоит из:
-уплощенных мешочков «цистерн» с расширенными краями – имеют вид дискообразных полостей, расположенных часто группами по 13–15 (диктиосомы). Каждая стопка обычно состоит из 4-х–6-ти «цистерн», является структурно-функциональной единицей аппарата Гольджи и называется диктиосомой. Число диктиосом в клетке колеблется от одной до нескольких сотен;
- крупных вакуолей (пузырьки Гольджи) – образуются в результате расширения цистерн; мелких вакуолей – отшнуровываются от краев цистерн. Их число доходит до нескольких тысяч.
Структура и функция комплекса Гольджи
Функции:
1) накопление белков, липидов, углеводов,
2) модификация поступивших органических веществ,
3) «упаковка» в мембранные пузырьки белков, липидов, углеводов,
4) секреция белков, липидов, углеводов,
5) синтез углеводов и липидов,
6) место образования лизосом.
Секреторная функция является важнейшей, поэтому аппарат Гольджи хорошо развит в секреторных клетках.
Лизосомы — от “лизио” – растворяю и “сома” – тело - одномембранные органоиды. Представляют собой мелкие пузырьки (диаметр от 0,2 до 0,8 мкм), Характерны для клеток животных, грибов, в растениях не выявлены. Различают 4 вида лизосом:
- первичная лизосома – содержит неактивные ферменты, синтезированные рибосомами, накопленными в ЭПС и поступившими в комплекс Гольджи, который упаковывает их в мембранный пузырек.
- вторичная лизосома – гетерофагосома или пищеварительная вакуоль, возникает как результат соединения первичной лизосомы с поглощенным клеткой (путем фаго, и пиноцитоза) чужеродным материалом или собственными компонентами клетки, предназначенными для расщепления. Поглощенный материал постепенно переваривается под действием гидролаз поступивших в фагосому, переваренные вещества проходят через мембрану фагосомы и включаются в состав клетки.
- остаточные тельца – содержат непереваренные вторичными лизосомами питательные вещества. У простейших остаточные тельца выделяются во внешнюю среду. В других случаях они могут длительное время сохраняться в клетке и вызывать различные патологические процессы (у человека известно около 12 врожденных заболеваний, при которых отмечается дисфункция лизосом).
- цитолизосома – образуется при соединении первичной лизосомы с компонентами самой клетки (например, митохондрий или участков ЭПС). Они образуются в ходе различных физиологических (регенерация) и патологических процессов.
Свойства лизосом:
- образуются в комплексе Гольджи.
- содержатся в клетке от 10 до 100 и более.
- содержат около 60 гидролаз (класс ферментов, катализирующих реакции расщепления различных веществ: белков, жиров, углеводов, при участии молекул воды).
2) уничтожение ненужных клеточных и неклеточных структур,
3) участие в процессах реорганизации клеток.
Вакуоли — одномембранные органоиды, представляют собой «емкости», заполненные водными растворами органических и неорганических веществ. В образовании вакуолей принимают участие ЭПС и аппарат Гольджи. Молодые растительные клетки содержат много мелких вакуолей, которые затем по мере роста и дифференцировки клетки сливаются друг с другом и образуют одну большую центральную вакуоль. Центральная вакуоль может занимать до 95% объема зрелой клетки, ядро и органоиды оттесняются при этом к клеточной оболочке. Мембрана, ограничивающая растительную вакуоль, называется тонопластом. Жидкость, заполняющая растительную вакуоль, называется клеточным соком. В состав клеточного сока входят водорастворимые органические и неорганические соли, моносахариды, дисахариды, аминокислоты, конечные или токсические продукты обмена веществ (гликозиды, алкалоиды), некоторые пигменты (антоцианы).
В животных клетках имеются мелкие пищеварительные и автофагические вакуоли, относящиеся к группе вторичных лизосом и содержащие гидролитические ферменты. У одноклеточных животных есть еще сократительные вакуоли, выполняющие функцию осморегуляции и выделения.
5) окрашивание цветов и плодов и привлечение тем самым опылителей и распространителей семян
Эндоплазматическая сеть, аппарат Гольджи, лизосомы и вакуоли образуют единую вакуолярную сеть клетки, отдельные элементы которой могут переходить друг в друга.
Двумембранные:
Митохондрии«митос»- нить, «хондрион» -зерно–энергетические органоиды их еще называют «силовыми станциями» клеток. Форма митохондрий различна, они м.б. овальными, палочковидными, нитевидными. Число митохондрий зависит от функциональной активности клетки и может достигать десятка тысяч в летательных мышцах насекомых.Оболочка митохондрии состоит из двух мембран – наружной – гладкой (не образующую никаких складок) и внутренней- образует многочисленные складки – кристы (лат. «криста» - гребень, вырост). Внутри митохондрий находятся РНК, ДНК и рибосомы отличающиеся от цитоплазматических. Между кристами находится вязкая белоксодержащая масса - матрикс,в нем содержатся различные ферменты. С помощью этих ферментов происходит преобразование энергии питательных веществ в энергию АТФ - необходимую для жизнедеятельности клетки и организма в целом.
Согласно одной из гипотез (теория симбиогенеза) митохондрии произошли от древних свободноживущих аэробных прокариотических организмов, которые, случайно проникнув в клетку-хозяина, затем образовали с ней взаимовыгодный симбиотический комплекс. В пользу этой гипотезы свидетельствуют следующие данные. Во-первых, митохондриальная ДНК имеет такие же особенности строения как и ДНК современных бактерий (замкнута в кольцо, не связана с белками). Во-вторых, митохондриальные рибосомы и рибосомы бактерий относятся к одному типу — 70S-типу. В-третьих, механизм деления митохондрий сходен с таковым бактерий. В-четвертых, синтез митохондриальных и бактериальных белков подавляется одинаковыми антибиотиками.
Основная функция–1) синтезАТФ;
2)кислородное расщепление органических веществ.
Пластиды
Пластиды характерны только для растительных клеток. Различают три основных типа пластид: лейкопласты — бесцветные пластиды в клетках неокрашенных частей растений, хромопласты — окрашенные пластиды обычно желтого, красного и оранжевого цветов, хлоропласты — зеленые пластиды. Строение пластид: 1 — наружная мембрана; 2 — внутренняя мембрана; 3 — строма; 4 — тилакоид; 5 — грана.
Хлоропласты. В клетках высших растений хлоропласты имеют форму двояковыпуклой линзы. Длина хлоропластов колеблется в пределах от 5 до 10 мкм, диаметр — от 2 до 4 мкм. Хлоропласты ограничены двумя мембранами. Наружная мембрана (1) гладкая, внутренняя (2) имеет сложную складчатую структуру. Наименьшая складка называется тилакоидом (4). Группа тилакоидов, уложенных наподобие стопки монет, называется граной (5). В хлоропласте содержится в среднем 40–60 гран, расположенных в шахматном порядке. Граны связываются друг с другом уплощенными каналами — ламеллами (6). В мембраны тилакоидов встроены фотосинтетические пигменты и ферменты, обеспечивающие синтез АТФ. Главным фотосинтетическим пигментом является хлорофилл, который и обусловливает зеленый цвет хлоропластов.
Внутреннее пространство хлоропластов заполнено стромой (3). В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты цикла Кальвина, зерна крахмала (7). Внутри каждого тилакоида находится протонный резервуар, происходит накопление Н+. Хлоропласты, также как митохондрии, способны к автономному размножению путем деления надвое. Они содержатся в клетках зеленых частей высших растений, особенно много хлоропластов в листьях и зеленых плодах. Хлоропласты низших растений называют хроматофорами.
Функция хлоропластов: фотосинтез. Полагают, что хлоропласты произошли от древних эндосимбиотических цианобактерий (теория симбиогенеза). Основанием для такого предположения является сходство хлоропластов и современных бактерий по ряду признаков (кольцевая, «голая» ДНК, рибосомы 70S-типа, способ размножения).
Лейкопласты. Форма варьирует (шаровидные, округлые, чашевидные и др.). Лейкопласты ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя образует малочисленные тилакоиды. В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты синтеза и гидролиза запасных питательных веществ. Пигменты отсутствуют. Особенно много лейкопластов имеют клетки подземных органов растения (корни, клубни, корневища и др.).
Функция лейкопластов: синтез, накопление и хранение запасных питательных веществ. Амилопласты — лейкопласты, которые синтезируют и накапливают крахмал, элайопласты — масла, протеинопласты — белки. В одном и том же лейкопласте могут накапливаться разные вещества.
Хромопласты.Ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя или также гладкая, или образует единичные тилакоиды. В строме имеются кольцевая ДНК и пигменты — каротиноиды, придающие хромопластам желтую, красную или оранжевую окраску. Форма накопления пигментов различная: в виде кристаллов, растворены в липидных каплях (8) и др. Содержатся в клетках зрелых плодов, лепестков, осенних листьев, редко — корнеплодов. Хромопласты считаются конечной стадией развития пластид.
Функция хромопластов: окрашивание цветов и плодов и тем самым привлечение опылителей и распространителей семян.
Все виды пластид могут образовываться из пропластид. Пропластиды — мелкие органоиды, содержащиеся в меристематических тканях. Поскольку пластиды имеют общее происхождение, между ними возможны взаимопревращения. Лейкопласты могут превращаться в хлоропласты (позеленение клубней картофеля на свету), хлоропласты — в хромопласты (пожелтение листьев и покраснение плодов). Превращение хромопластов в лейкопласты или хлоропласты считается невозможным.
Немембранные:
Рибосомы. Это мелкие органеллы (диаметром порядка 20 нм), встречающиеся в клетках всех организмов. Рибосомы располагаются либо на мембранах шероховатой эндоплазматической сети, либо свободно лежат в цитоплазме. И в тех и других синтезируются белки. В одной клетке содержится много тысяч рибосом.
Строение: Каждая рибосома состоит из двух неодинаковых по размерам частиц, малой и большой. Образуется в ядрышке из ДНК. В состав рибосом входят белки и рибосомальные РНК (р- РНК). Молекулы рРНК составляют 90% массы рибосомы и образуют ее структурный каркас. Большинство белков специфически связано с определенными участками рРНК. Некоторые белки входят в состав рибосом только во время биосинтеза белка.
Схема строения рибосомы:
1 — малая субъединица; 2 — иРНК; 3 — тРНК; 4 — аминокислота; 5 — большая субьединица; б — мембрана эндоплазматической сети; 7 — синтезируемая полипептид-ная цепь.
Функции: обеспечивает синтез белка (сборку белковой молекулы из аминокислот).
Синтез белка - сложный процесс, который осуществляется не одной рибосомой, а целой группой, включающей до нескольких десятков объединенных рибосом. Такую группу рибосом называют полисомой.
Синтезированные белки сначала накапливаются в каналах и полостях эндоплазматической сети, а затем транспортируются к органоидам и участкам клетки, где они потребляются.