Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Если обработка металлов давлением происходит при нагреве металлического тела выше температуры рекристаллизации, то она называется горячей



Основными законамиобработки металлов давлением являются:

Закон постоянства объемов - объем металла до деформации практически равен объему металла после деформации.

Закон наименьшего сопротивления - частицы деформируемого металла всегда перемещаются в направлении наименьшего сопротивления.

Ниже рассмотрены методы холодной обработки давлением:

 

Холодная объёмная штамповка.

Штамповка без предварительного нагрева заготовки - для металлов и сплавов такой процесс деформирования соответствует условиям холодной деформации. Отсутствие окисленного слоя на заготовках (окалины) при холодной штамповке обеспечивает хорошее качество поверхности детали и достаточно высокую точность размеров, это уменьшает объём обработки резанием или даже исключает её. Основные разновидности холодной объёмной штамповки - холодное выдавливание, холодная высадка, холодная штамповка в открытом штампе.

 

Холодное выдавливание.

Заготовку помещают в полость, из которой металл выдавливают в отверстия, имеющиеся в рабочем инструменте. Выдавливание обычно выполняют на кривошипных или гидравлических прессах в штампах, рабочими частями которых являются пуансон и матрица.

При прямом выдавливании (см. схему выдавливания №4) металл вытекает в отверстие, расположенное в донной части матрицы в направлении, совпадающем с направлением движения пуансона относительно матрицы. Если на торце пуансона (см. схему выдавливания №1) имеется стержень, перекрывающий отверстие матрицы до начала выдавливания, то металл выдавливается в кольцевую щель между стержнем и отверстием матрицы.

При обратном выдавливании направление течения металла противоположно направлению движения пуансона относительно матрицы. Наиболее часто встречающейся схемой обратного выдавливания является схема, при которой металл может выдавливаться в кольцевой зазор между пуансоном и матрицей (см. схему выдавливания №2). Реже применяют схему обратного выдавливания, при которой металл выдавливается в отверстие в пуансоне, для получения деталей типа стержень с фланцем (см. схему выдавливания №1).

При боковом выдавливании металл вытекает в отверстие в боковой части матрицы в направлении, не совпадающем с движением пуансона (см. схему выдавливания №3).

Комбинированное выдавливание характеризуется одновременным течением металла по нескольким направлениям и может быть осуществлено по нескольким из рассмотренных ранее схем холодного выдавливания. Например, схема выдавливания №4: схема комбинированного выдавливания для изготовления обратным выдавливанием полой, чашеобразной части детали, а прямым выдавливанием - стержня, отходящего от её донной части.

Основной положительной особенностью выдавливания является возможность получения без разрушения заготовки весьма больших степеней деформации, которые можно характеризовать показателем k=FO/Fl (FO и F1 -площади поперечного сечения исходной заготовки и выдавленной части детали). Для весьма мягких, пластичных металлов k>100 (алюминиевые трубы со стенкой толщиной 0,1-0,2 мм при диаметре трубы 20-40 мм). Пластическое деформирование при выдавливании происходит в условиях всестороннего неравномерного сжатия.

Всестороннее сжатие приводит и к отрицательным явлениям. Чем больше степень деформации, тем больше усилие деформирования, и удельные усилия могут достичь значений, превышающих в несколько раз предел текучести деформируемого металла и превышающих значения, допустимые для инструмента по условиям его прочности или стойкости. Высокие удельные усилия выдавливания изменяются в ходе деформирования и зависят от высоты подвергающейся деформированию части заготовки. При выдавливании пластическая деформация охватывает обычно не весь объём заготовки, а лишь часть его (см. схемы выдавливания). Для уменьшения удельных усилий выдавливания при проектировании штампуемой детали необходимо стремиться к такой её конфигурации, при которой отсутствовали бы застойные зоны под торцом пуансона (см. схему выдавливания №2) или у рабочей поверхности матрицы. Основное технологическое мероприятие, направленное на снижение удельных усилий выдавливания, - применение различных смазывающих материалов или покрытий заготовок для уменьшения сил трения. В обычных условиях выдавливания силы трения препятствуют пластическому истечению металла и существенно увеличивают усилия деформирования.

См. также ориентировочные значения давления пластического течения для стали, алюминия и латуни.

 

Холодная высадка.

Высадка - уменьшение длины части заготовки с получением местного увеличения поперечных размеров. Штамповкой на холодновысадочных автоматах обеспечиваются достаточно высокая точность размеров и хорошее качество поверхности, вследствие чего некоторые детали не требуют последующей обработки резанием. Штамповка на холодновысадочных автоматах высокопроизводительна: 20-400 деталей в минуту. Штамповка на холодновысадочных автоматах характеризуется высоким коэффициентом использования металла. Средний коэффициент использования металла 95% (только 5% идёт в отход).

На холодновысадочных автоматах штампуют заготовки диаметром 0,5 - 40 мм из чёрных и цветных металлов, а также детали с местными утолщениями сплошные и с отверстиями.

См. также ориентировочные значения давления пластического течения для стали, алюминия и латуни.

 

Холодная штамповка в открытых штампах

Холодная штамповка в открытых штампах заключается в придании заготовке формы детали путём заполнения полости штампа металлом заготовки (см. схему штамповки в открытых штампах). Холодная объёмная штамповка требует значительных удельных усилий вследствие высокого сопротивления металла деформированию в условиях холодной деформации и упрочнения металла в процессе деформирования. Упрочнение сопровождается и уменьшением пластичности. Для уменьшения вредного влияния упрочнения и облегчения процесса деформирования при холодной штамповке оформление детали обычно расчленяют на переходы, между которыми заготовку подвергают рекристаллизационному отжигу. В закрытых штампах в условиях холодной деформации штампуют реже и главным образом из цветных металлов. Холодной штамповкой можно изготовлять пространственные детали сложных форм (сплошные и с отверстиями). Холодная объёмная штамповка обеспечивает получение деталей со сравнительно большой точностью размеров и качеством поверхности. Это уменьшает объём обработки резанием или даже исключает её. Однако, учитывая, что изготовление штампов трудоёмко и дороже изготовления инструмента, используемого при обработке резанием, холодную штамповку следует применять лишь при достаточно большой серийности производства.

См. также ориентировочные значения давления пластического течения для стали, алюминия и латуни.

 

Листовая штамповка.

Изготовление плоских и объёмных тонкостенных изделий из листов, полос или лент с помощью штампов. Исходные материалы: чёрные, цветные сплавы, а также неметаллические материалы. Наиболее высокие пластические свойства необходимы для глубокой вытяжки (сталь с содержанием углерода от 0,05% до 0,15%). Способность металла к вытяжке и другим операциям листовой штамповки определяется его механическими свойствами и технологической пробой. Свойства: относительное удлинение, поперечное сужение, предел прочности. Проба: шарик вдавливается до разрушения. Обычно толщина листа <3,6 мм. При мелкосерийном производстве толщина листа < 2,5 мм. Все виды операций делятся на разделительные и формообразующие. Разделительные: обрезка (полное отделение одной части от другой по замкнутому контуру), вырубка (полное отделение одной части от другой, когда отделяемая часть является изделием), пробивка (получение отверстий). Формоизменяющие: гибка (придание заготовке изогнутой формы без применения или с применением растяжки), профилирование ленты (непрерывное превращение ленты в заданный профиль с последовательной гибкой на роликовых машинах или специальных прессах), вытяжка (без утонения материала и с утонением материала), формовка (изготовление деталей из листа и круглой заготовки посредством пластического деформирования без изменения толщины материала, раздача (образование горловины или увеличение диаметра полой заготовки), отжимка (местное уменьшение диаметра полой заготовки), отбортовка (образование борта путём расширения ранее пробитого отверстия).

Пример использования листовой штамповки.

Для деталей, получаемых листовой штамповкой, характерно то, что толщина их стенок незначительно отличается от толщины исходной заготовки. При изготовлении листовой штамповкой пространственных деталей заготовка обычно испытывает значительные пластические деформации. Эти обстоятельства вынуждает предъявлять к материалу достаточно высокие требования по пластичности. Холодная листовая штамповка получила более большое применение, чем горячая. При листовой штамповке чаще всего используют низкоуглеродистую сталь, пластичные легированные стали, медь, латунь, содержащую более 60%Си, алюминий и его сплавы, магниевые сплавы, магниевые сплавы, титан, и др. К преимуществам листовой штамповки относятся возможность получения деталей минимальной массы при заданных прочности и жёсткости; достаточно высокие точность размеров и качество поверхности, позволяющие до минимума сократить отделочные операции обработки резанием; сравнительная простота механизации и автоматизации процессов штамповки, обеспечивающая высокую производительность (30-40 тыс. деталей в смену с одной машины); хорошая приспособляемость к масштабам производства, при которой листовая штамповка может быть экономически целесообразна и в массовом, и в мелкосерийном производстве. Как правило, при листовой штамповке пластические деформации получает лишь часть заготовки. Различают формоизменяющие операции, в которых заготовка не должна разрушаться в процессе деформирования, и разделительные которых этап пластического деформирования обязательно завершается разрушением. При проектировании технологического процесса изготовления деталей листовой штамповкой основной задачей является выбор наиболее рациональных операций и последовательности их применения.

Вытяжка. Вытяжка бывает с утонением и без. Вытяжка без утонения стенки превращает плоскую заготовку в полое пространственное изделие при уменьшении периметра вытягиваемой заготовки. Вытяжка с утонением стенки увеличивает длину заготовки в основном за счёт уменьшения толщины стенки исходной заготовки. См. схему вытяжки.

При вырубке и пробивке характер деформирования заготовки одинаков. Эти операции отличаются только назначением, вырубкой оформляют наружный контур детали (или заготовки для последующего деформирования), а пробивкой - внутренний контур (изготовление отверстий). Вырубка и пробивка выполняются на прессах для заготовок с толщиной листа <20 мм (вырубка) и толщиной <35 мм (пробивка).

Гибка - изготовление деталей с толщиной до 15 мм на универсальных листоштампах или специальных гибочных прессах. Минимальные радиусы гибки см. в таблице. Минимальные радиусы следует применять только в случае абсолютной конструкционной необходимости.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.