Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Применение современных сетевых технологий в деятельности следственных аппаратов



ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ КАЗЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ОРЛОВСКИЙ ЮРИДИЧЕСКИЙ ИНСТИТУТ

МИНИСТЕРСТВА ВНУТРЕННИХ ДЕЛ

РОССИЙСКОЙ ФЕДЕРАЦИИ»

КАФЕДРА ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

В ДЕЯТЕЛЬНОСТИ ОВД

ПРАКТИКУМ

По дисциплине “Использование ЭВМ в деятельности

следственных органов”

Вариант № 4.

Выполнил: слушатель 505 уч.группы

Мл.лейтенант полиции

Фомина Е.А.

 

 

Орел-2013

Применение современных сетевых технологий в деятельности следственных аппаратов

Сетевые технологии работают в сегментах локальных сетей и называются также LAN-технологиями или сетевыми спецификациями. Самой популярной сетевой технологией является Ethernet, но вы можете подыскать для своей сети другую, более подходящую технологию.

В этом разделе мы обсудим технологию Ethernet и ее разновидности: Ethernet, работающий на скорости 1 Гбит/с (гигабитный Ethernet), и Ethernet, работающий на скорости 10 Гбит/с (десятигигабитный Ethernet); поговорим о технологиях Token Ring, ATM (Asynchronous Transfer Mode) и беспроводной сети.

Как уже было сказано выше, сетевые технологии реализуются на канальном уровне стандартной модели OSI. Это значит, что их можно охарактеризовать физическими носителями и способом управления доступом к этим носителям. Работа в сети требует наличия связности отдельных сетевых устройств и определенного порядка их взаимодействия. По этой причине канальный уровень передачи данных еще называют уровнем управления доступом к среде или MAC-уровнем. Сообщения, расположенные на этом уровне, называются фреймами.

 

Порядок взаимодействия в сетевом соединении обеспечивается только за счет МАС-адресов (серийных номеров или идентификаторов). Для передачи сообщения из локальной сети во внешнюю необходим протокол сетевого уровня, например IP. Сетевые технологии могут функционировать только в коммутируемых объединенных сетях, т.е. их целесообразно использовать в локальных сетях или при передаче по простым, неразветвленным, протяженным маршрутам.

Сетевые технологии работают на двух уровнях.

· Сети общего доступа. Сетевые технологии обеспечивают связь между устройствами, рабочими группами и общими ресурсами типа принтеров и серверов. Такие локальные сети формируются с помощью хабов или коммутаторов и обеспечивают соединение "местного" масштаба. Например, в крупном учреждении сети общего доступа могут охватить один этаж.

· Магистральные сети. Сетевые технологии устанавливают связи между сетями общего доступа и такими устройствами, как серверы баз данных и почтовые серверы. Магистральные сети включают в себя маршрутизаторы и LAN-коммутаторы. Обычно они служат для соединения сетей внутри одного здания или студенческого городка. На рисунке 1.4 показано различие между сетями общего доступа и магистральными сетями.

До сих пор в этой лекции мы обсуждали тот факт, что разные компьютеры могут общаться друг с другом с помощью уникальных, присущих только им способов. Но общаются не только компьютеры. Некоторые компании разработали свои собственные средства преодоления межсетевого пространства как локального, так и глобального масштаба.


Рис. 1.4. Сеть общего доступа и магистральная сеть

 

Ethernet

В 1970 г. корпорация Xerox разработала первую версию Ethernet. Спустя десять лет, в результате совместных усилий с компаниями Intel и Digital Equipment Corporation (позже превратившейся в Compaq), в 1983 г. была выпущена вторая версия. В последующие 20 лет Ethernet стала лидирующей сетевой технологией. Возможно, такой популярности Ethernet обязана своей дешевизне. Сетевая карта Ethernet стоит меньше 10 долларов, а некоторые производители интегрируют Ethernet-карты в материнские платы своих компьютеров.

Наряду с популярностью возрастала и мощность Ethernet. Термин Ethernet стал применяться при описании технологии со скоростью передачи данных в 10 Мб/с. Fast Ethernet, внедренный в 1995 г., работал на скорости 100 Мб/с. В следующем году появился гигабитный Ethernet, а в 2002 г. в качестве стандарта был предложен 10-гигабитный Ethernet, который выводит технологию Ethernet на просторы глобальных вычислительных сетей (WAN). Технология Ethernet удовлетворяет спецификации IEEE 802.3.

Примечание. Институт инженеров по электротехнике и электронике (Institute for Electronics Engineers - IEEE), возникший еще в 20 веке, разработал стандарты для первого и второго уровней модели OSI. Стандарты 3 уровня (и выше) выпустила инженерная группа проектирования интернета (Internet Engineering Task Force - IETF).

Архитектура Ethernet

Популярность Ethernet нередко вызывает удивление. Эта технология изначально не является эффективной. На самом деле только 37 % полосы пропускания подходит для ее функционирования, так как Ethernet работает в условиях одновременного использования канала связи. Устройства, подключенные к локальной сети Ethernet, прослушивают линию и ожидают ее освобождения для отправки сообщения. Если два устройства одновременно начинают передачу данных, и их пакеты сталкиваются, то обе передачи прерываются, и рабочие станции через некоторое время, определяемое случайным образом, осуществляют новую попытку отправки данных.

Ethernet использует алгоритм CSMA/CD (Carrier Sense Multiple Access with Collision Detection - множественный доступ с контролем несущей и обнаружением конфликтов) для прослушивания линии, распознавания коллизии и прерывания передачи. CSMA/CD является "светофором" технологии Ethernet и служит для предотвращения беспорядочных столкновений пакетов в сети. На рисунке 1.5 показано, как работает алгоритм CSMA/CD.


Рис. 1.5. Работа алгоритма CSMA/CD

 

Технология Ethernet использует общую среду передачи, поэтому все устройства локальной сети Ethernet получают все сообщения, а затем проверяют, совпадает ли адрес назначения с собственным адресом устройства. Если адреса совпадают, то сообщение принимается и проходит через все семь уровней стека, в противном случае сообщение отбрасывается.

Реализация коммутируемой архитектуры сети Ethernet имеет преимущество в том, что линии, связывающие коммутатор с устройствами, подключенными к сети, получают полосу пропускания максимальной ширины. Это объясняется тем, что передаваемые пакеты не отправляются широковещанием ко всем устройствам сети, а передаются от коммутатора к пункту назначения.

ATM

Технология асинхронного режима передачи (Asynchronous Transfer Mode, ATM) отличается от других сетевых технологий тем, что каждая передача состоит из 53-байтовых ячеек. Ячейки - это блоки фиксированной длины и, подобно пакетам, представляют собой части сообщения. Формат фиксированной длины позволяет получать уникальные характеристики.

· Ориентация на виртуальные каналы связи. Сетевые соединения, использующие ячейки, наиболее эффективно работают в режиме двухточечного соединения (point-to-point), когда принимающая станция находится в состоянии активности и готова к приему и обработке ячеек.

· Скорость. Благодаря одинаковой величине ячеек устройства, обслуживающие технологию АТМ, могут точно определить заголовок ячейки и начало блока данных. Это ускоряет процесс обработки и позволяет АТМ-сетям работать со скоростью до 622 Мбит/с.

· Качество обслуживания (QoS). Прогнозируемые скорости передачи данных и виртуальные каналы позволяют гарантировать высокий уровень обслуживания для большей части трафика.

АТМ-технология отличается от технологии Ethernet и Token Ring тем, что является коммутируемой технологией, в которой виртуальные каналы устанавливаются до начала передачи. Ethernet и Token Ring не создают виртуальных каналов, более того, они отсылают сообщение хосту без предварительного уведомления, оставляя задачу определения оптимального маршрута маршрутизаторам.

Ячейки АТМ достаточно малы (53 байта) по сравнению с Ethernet-пакетами, имеющими размер от 64 до 1500 байт, поэтому их быстрее обрабатывать и легче осуществлять контроль.

 

Еще одной отличительной чертой АТМ является то, что эта технология разработана для оптоволоконных кабелей, работающих в технических условиях синхронных оптических сетей (Synchronous Optical Network, SONET). SONET является ANSI-стандартом, который определяет характеристики физических интерфейсов, подключаемых к оптоволоконным кабелям.

Архитектура ATM-сетей эффективно использует полосу передачи для максимальных скоростей, на 75% превышая эффективность технологии Token Ring. Скорость передачи для большинства магистральных АТМ-сетей составляет 155 Мбит/с (ОС-3) или 622 Мбит/с (ОС-12). Скорость передачи для сильно нагруженных междугородных линий связи составляет 622 Мбит/с (ОС-12) и 2,488 Гбит/с (ОС-48).

Примечание. ОС определяет оптический носитель и является мерой скорости при передаче данных по оптоволоконным линиям.

Беспроводная связь

Функциональные особенности вышеописанных сетевых технологий сильно отличаются друг от друга. Одни технологии являются более распространенными, другие - более дорогими, третьи - более эффективными. Хотя технологии Ethernet, АТМ, Frame Relay обладают уникальными функциями, у них есть одна общая черта - необходимость физического соединения между хостами, независимо от того, что их соединяет: медный кабель "витая пара" или оптическое волокно. Беспроводные локальные сети (Wireless LAN, WLAN) "освобождают" устройства от физической привязки к сети, при этом сохраняя возможность передачи данных.

Технологической базой для работы беспроводных локальных сетей является стандарт IEEE 802.11. Он введен в эксплуатацию в начале 90-х годов прошлого века и применяется в нелицензированном диапазоне частот 2,4 ГГц. Первые версии стандарта 802.11 поддерживали скорость передачи данных от одного до двух мегабит в секунду. Усовершенствованный стандарт 802.11b повысил эту скорость до 5,5 Мбит/с и 11 Мбит/с, что достигается расширением спектра сигнала по принципу прямой последовательности (DSSS), т. е. использованием другой схемы модуляции.

Появилась новая версия протокола 802.11а, работающая на скорости 54 Мбит/с, но она еще не завоевала такой популярности, как версия 802.11b. Протоколы 802.11 и 802.11b работают на частоте 2,4 ГГц, а версия 802.11а - на частоте 5,8 ГГц. Вместо DSSS в этой версии используется ортогональное мультиплексирование деления частоты (Orthogonal Frequency Division Multiplexing, OFDM).

Целью разработки стандарта 802.11а было следующее:

· создать спецификацию МАС-уровня и физического уровня для беспроводных соединений;

· предоставить беспроводную связь автоматическому оборудованию, устройствам или станциям, требующим быстрого соединения;

· представить стандарт для глобального и повсеместного использования.

Примечание. Именно из-за третьего пункта IEEE выбрал в качестве рабочей частоты 2,4 ГГц. Это нелицензированная полоса частот, предназначенная для использования в промышленности, науке и медицине.

Архитектура беспроводных локальных сетей, работающих по стандарту 802.11, напоминает архитектуру сетей сотовой телефонной связи. Используя сетевую архитектуру, описанную ниже, беспроводные компьютерные сети пользуются преимуществами роуминга телефонных сетей, обеспечивая высокие скорости передачи данных.

· Ячейки и наборы. Беспроводная локальная сеть (WLAN) 802.11 поделена на ячейки. Каждая ячейка управляется точкой доступа (access point, АР). Точка доступа - это устройство, осуществляющее обмен данными с беспроводными сетевыми картами. Одна точка доступа не может удовлетворять все запросы локальной беспроводной сети, поэтому имеется возможность присоединения множества точек доступа к общей магистрали. При совместной работе нескольких АР образуется так называемая распределенная система (distribution system). Независимо от размера сети и наличия подключенных к ней узлов, группа беспроводных устройств рассматривается верхними уровнями модели OSI в качестве одной локальной сети IEEE 802.11.

· Физический уровень. Протокол 802.11 охватывает физический уровень и МАС-уровень. Он распространяется на следующие виды беспроводных носителей: с расширением спектра сигналов со скачкообразной перестройкой частоты, с расширением спектра сигнала по принципу прямой последовательности и инфракрасные. Один МАС-уровень поддерживает все три физических уровня.

Использование архитектуры сотовой связи позволяет беспроводным устройствам соединяться, разъединяться и совершать роуминг от ячейки к ячейке.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.