Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Гибридная архитектура NUMA



Гибридная архитектура NUMA (no uniform memory access). Главная особенность такой архитектуры - неоднородный доступ к памяти.
Гибридная архитектура воплощает в себе удобства систем с общей памятью и относительную дешевизну систем с раздельной памятью. Суть этой архитектуры - в особой организации памяти, а именно: память является физически распределенной по различным частям системы, но логически разделяемой, так что пользователь видит единое адресное пространство. Система состоит из однородных базовых модулей (плат), состоящих из небольшого числа процессоров и блока памяти. Модули объединены с помощью высокоскоростного коммутатора. Поддерживается единое адресное пространство, аппаратно поддерживается доступ к удаленной памяти, т.е. к памяти других модулей. При этом доступ к локальной памяти осуществляется в несколько раз быстрее, чем к удаленной. По существу архитектура NUMA является MPP (массивно-параллельная архитектура) архитектурой, где в качестве отдельных вычислительных элементов берутся SMP (cимметричная многопроцессорная архитектура) узлы.
Структурная схема компьютера с гибридной сетью: четыре процессора связываются между собой при помощи кроссбара в рамках одного SMP узла. Узлы связаны сетью типа "бабочка" (Butterfly):
Наиболее известными системами архитектуры cc-NUMA являются: HP 9000 V-class в SCA-конфигурациях, SGI Origin3000, Sun HPC 15000, IBM/Sequent NUMA-Q 2000. На настоящий момент максимальное число процессоров в cc-NUMA-системах может превышать 1000 (серия Origin3000). Обычно вся система работает под управлением единой ОС, как в SMP.

 

 

PVP-архитектура.

PVP (Parallel Vector Process) - параллельная архитектура с векторными процессорами.
Основным признаком PVP-систем является наличие специальных векторно-конвейерных процессоров, в которых предусмотрены команды однотипной обработки векторов независимых данных, эффективно выполняющиеся на конвейерных функциональных устройствах. Как правило, несколько таких процессоров (1-16) работают одновременно с общей памятью (аналогично SMP) в рамках многопроцессорных конфигураций. Несколько таких узлов могут быть объединены с помощью коммутатора (аналогично MPP). Поскольку передача данных в векторном формате осуществляется намного быстрее, чем в скалярном (максимальная скорость может составлять 64 Гб/с, что на 2 порядка быстрее, чем в скалярных машинах), то проблема взаимодействия между потоками данных при распараллеливании становится несущественной. И то, что плохо распараллеливается на скалярных машинах, хорошо распараллеливается на векторных. Таким образом, системы PVP архитектуры могут являться машинами общего назначения (general purpose systems). Однако, поскольку векторные процессоры весьма дороги, эти машины не будут являться общедоступными.
Наиболее популярны 3 машины PVP архитектуры:

- CRAY SV-2, SMP архитектура. Пиковая производительность системы в полной конфигурации достигает 1 Тфлопс, максимальная емкость памяти - 1 Тб. Особенностью системы является сочетание двух типов процессоров: многопотокового процессора (Multi Streaming Processor - MSP) с производительностью - 4,8 Гфлопс и стандартного процессора (Single-streaming processor - SSP) с производительностью - 1,2 Гфлопс. В максимальной конфигурации отдельный узел системы может содержать до 6 MSP и 8 обычных процессоров. Система масштабируется до 32-х узлов.

- NEC SX-6, NUMA архитектура. Пиковая производительность системы может достигать 5120 Гфлопс, производительность 1 процессора составляет 8 Гфлопс. Система масштабируется до 256 узлов.

- Fujitsu-VPP5000 (vector parallel processing) ), MPP архитектура. Производительность 1 процессора составляет 9.6 Гфлопс, пиковая производительность системы может достигать 1249 Гфлопс, максимальная емкость памяти - 8 Тб. Система масштабируется до 512 узлов.

- Парадигма программирования на PVP системах предусматривает векторизацию циклов (для достижения разумной производительности одного процессора) и их распараллеливание (для одновременной загрузки нескольких процессоров одним приложением).

На практике рекомендуют следующие процедуры:

- производить векторизацию вручную, цель - перевести задачу в матричную форму. При этом, в соответствии с длиной вектора, размеры матрицы должны быть кратны 128 или 256.

- работать с векторами в виртуальном пространстве, разлагая искомую функцию в ряд и оставляя число членов ряда, кратное 128 или 256.

За счет большой физической памяти (доли терабайта), даже плохо векторизуемые задачи на PVP системах решаются быстрее, на системах со скалярными процессорами.

 




©2015 studopedya.ru Все права принадлежат авторам размещенных материалов.