Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Классы обслуживания. Примеры классов. Параметры трафика



Скорость передачи ячеек, неравномерность трафика. Поскольку в сети АТМ-трафик передается в виде ячеек, т.е. имеет пакетную структуру, передача трафика может производиться блоками разной длины. Возникает задача определения степени неравномерности трафика.

К параметрам скорости передачи ячеек относятся:

— кратковременная допустимая пиковая скорость передачи данных (Peak Cell Rate, PCR), измеряемая количеством ячеек, генерируемых за единицу времени. Обозначим ее через λя [яч./с];

— средняя скорость передачи (Sustainable Cell Rate, SCR), поддерживаемая данным соединением и обеспечивающая приемлемый уровень качества для данного соединения: λm. [яч./с];

— минимальная скорость передачи (Minimum Cell Rate, MCR): Хmin[яч./с].

Хотя в теории можно встретить несколько параметров, характеризующих эту

неравномерность, в практике эксплуатации встречается один — максимальный размер блока (Maximum Burst Site, MBS) — максимальное количество ячеек, генерируемых источником на пиковой скорости: Lп.

Параметры скорости и неравномерности трафика показаны на рис. 6.2.

Классы трафика. В АТМ совмещаются в одних и тех же каналах связи и в одном и том же коммутационном оборудовании компьютерный и мультимедийный графики таким образом, чтобы каждый тип трафика получил требуемый уровень обслуживания и не рассматривался как «второстепенный».

Разработчики технологии АТМ проанализировали всевозможные образцы трафика, создаваемые различными приложениями, и выделили четыре основных класса служб трафика, для которых разработали различные механизмы резервирования и поддержания требуемого качества обслуживания. Класс трафика качественно характеризует требуемые услуги по передачи данных через сеть АТМ.

Трафик службы класса А — равномерный поток, имеет характеристику: постоянная битовая скорость (Constant Bit Rate, CBR). Требуются временные соотношения между передаваемыми и принимаемыми данными. С установлением соединения. Примеры: голосовой трафик, трафик телевизионного изображения. Для элементарного голосового трафика известна верхняя граница скорости— 64 кбит/с, заказываемая скорость должна быть кратна 64 кбит/с. При передаче голоса задержки не должны превышать 100 — 150 мс, превышение порога задержек резко снижает качество воспроизводимого голоса. Вариация задержки голосовых ячеек не должна превышать 40 мс. При передаче изображения задержка не должна превышать 30 мс. Вероятность потерь ячеек менее 10 -3.

Трафик службы класса В — неравномерный поток, имеет характеристику: переменная битовая скорость (Varible Bit Rate, VBR). Требуются временные соотношения между передаваемыми и принимаемыми данными. С установлением соединения. Примеры: компрессированный голос, компрессированное видеоизображение. Вероятность потерь ячеек 10-8.

Трафик службы класса С — неравномерный поток, имеет характеристику: переменная битовая скорость (Varible Bit Rate, VBR). Не требуются временные соотношения между передаваемыми и принимаемыми данными. С установлением соединения. Примеры: трафик компьютерных сетей, в которых конечные узлы работают по протоколам с установлением соединения: Frame Relay, Х.25, LLС2, TCP. Вероятность потерь ячеек 10-6.

Трафик службы класса D — неравномерный трафик, имеет характеристику: переменная битовая скорость (Varible Bit Rate, VBR). Не требуются временные соотношения между передаваемыми и принимаемыми данными. Без установления соединения. Примеры: трафик компьютерных сетей, в которых конечные узлы работают по протоколам без установления соединения (IP, Ethernet, DNS, SNMP). Коэффициент пульсации, или пачечность (т.е. отношение максимальной мгновенной скорости к средней скорости) находится в пределах 10 — 100. Вероятность потерь ячеек 10-6.

Трафик службы класса Х. Тип класса и его параметры определятся пользователем.

В технологии АТМ для каждого класса службы трафика определен набор количественных параметров качества, которые приложение должно задать. Например, для службы трафика класса А необходимо указать постоянную скорость, c которой приложение будет посылать данные в сеть, а для службы трафика класса В — максимально возможную скорость, среднюю скорость и максимально возможную пульсацию. Для голосового трафика можно не только указать на возможность синхронизации между передатчиком и приемником, но и количественно задать верхние границы задержки и вариации задержки ячеек.

В табл. 6.3 показана взаимосвязь между классами служб трафика и службами, а в табл. 6.4 указаны типы протоколов уровня адаптации AAL, обеспечивающие передачу трафика каждого класса.

В технологии ATM поддерживается следующий набор основных количественных параметров:

Peak Cell Rate (PCR) - максимальная скорость передачи данных;

Sustained Cell Rate (SCR) - средняя скорость передачи данных;

Minimum Cell Rate (MCR) - минимальная скорость передачи данных;

Maximum Burst Size (MBS) - максимальный размер пульсации;

Cell Loss Ratio (CLR) - доля потерянных ячеек;

Cell Transfer Delay (CTD) - задержка передачи ячеек;

Cell Delay Variation (CDV) - вариация задержки ячеек.

Параметры скорости измеряются в ячейках в секунду, максимальный размер пульсации - в ячейках, а временные параметры - в секундах. Максимальный размер пульсации задает количество ячеек, которое приложение может передать с максимальной скоростью PCR, если задана средняя скорость. Доля потерянных ячеек является отношением потерянных ячеек к общему количеству отправленных ячеек по данному виртуальному соединению. Так как виртуальные соединения являются дуплексными, то для каждого направления соединения могут быть заданы разные значения параметров.

В технологии ATM принят не совсем традиционный подход к трактовке термина "качество обслуживания" - QoS. Обычно качество обслуживания трафика характеризуется параметрами пропускной способности (здесь это RCR, SCR, MCR, MBS), параметрами задержек пакетов (CTD и CDV), а также параметрами надежности передачи пакетов (CLR). В ATM характеристики пропускной способности называют параметрами трафика и не включают их в число параметров качества обслуживания QoS, хотя по существу они таковыми являются. Параметрами QoS в ATM являются только параметры CTD, CDV и CLR. Сеть старается обеспечить такой уровень услуг, чтобы поддерживались требуемые значения и параметров трафика, и задержек ячеек, и доли потерянных ячеек.

В случае насыщения пропускной способности для сохранения минимальной задержки ATM может отбрасывать отдельные ячейки при насыщении. Реализация стратегии отбрасывания ячеек зависит от производителя оборудования ATM, но в общем случае обычно отбрасываются ячейки с низким приоритетом (например, данные) для которых достаточно просто повторить передачу без потери информации. Коммутаторы ATM с расширенными функциями могут при отбрасывании ячеек, являющихся частью большого пакета, обеспечить отбрасывание и оставшихся ячеек из этого пакета - такой подход позволяет дополнительно снизить уровень насыщения и избавиться от излишнего объема повторной передачи. Правила отбрасывания ячеек определяются QoS.

Соглашение между приложением и сетью ATM называется трафик-контрактом. Основным его отличием от соглашений, применяемых в сетях frame relay, является выбор одного из нескольких определенных классов трафика, для которого наряду с параметрами пропускной способности трафика могут указываться параметры задержек ячеек, а также параметр надежности доставки ячеек. В сети frame relay класс трафика один, и он характеризуется только параметрами пропускной способности. Необходимо подчеркнуть, что задание только параметров трафика (вместе с параметрами QoS) часто не полностью характеризует требуемую услугу, поэтому задание класса трафика полезно для уточнения нужного характера обслуживания данного соединения сетью.

В некоторых случаях специфика приложения такова, что ее трафик не может быть отнесен к одному из четырех стандартных классов. Поэтому для этого случая введен еще один класс X, который не имеет никаких дополнительных описаний, а полностью определяется теми количественными параметрами трафика и QoS, которые оговариваются в трафик-контракте.

Если для приложения не критично поддержание параметров пропускной способности и QoS, то оно может отказаться от задания этих параметров, указав признак "Best Effort" в запросе на установление соединения. Такой тип трафика получил название трафика с неопределенной битовой скоростью - Unspecified Bit Rate, UBR. После заключения трафик-контракта, который относится к определенному виртуальному соединению, в сети ATM работает несколько протоколов и служб, обеспечивающих нужное качество обслуживания. Для трафика UBR сеть выделяет ресурсы по возможности, то есть те, которые в данный момент свободны от использования виртуальными соединениями, заказавшими определенные параметры качества обслуживания.

Технология ATM изначально разрабатывалась для поддержки как постоянных, так и коммутируемых виртуальных каналов (в отличие от технологии frame relay, долгое время не поддерживающей коммутируемые виртуальные каналы). Автоматическое заключение трафик-контракта при установлении коммутируемого виртуального соединения представляет собой весьма непростую задачу, так как коммутаторам ATM необходимо определить, смогут ли они в дальнейшем обеспечить передачу трафика данного виртуального канала наряду с трафиком других виртуальных каналов таким образом, чтобы выполнялись требования качества обслуживания каждого канала.

28. Основные принципы технологии АТМ.

Глобальные сети (Wide Area Networks, WAN), которые также называются территориальными компьютерными сетями, служат для того, чтобы предоставлять свои сервисы большому количеству абонентов, разбросанных по большой территории. Ввиду большой протяженности каналов связи построение глобальной сети требует очень больших затрат, в которую входят стоимость кабелей и работ по их прокладке, затраты на коммутационное оборудование и промежуточную усилительную аппаратуру, обеспечивающую необходимую полосу пропускания канала, а также эксплутационные затраты на постоянное поддержание в работоспособном состоянии разбросанной по большой территории аппаратуры сети.

Типичными абонентами глобальной компьютерной сети является локальные сети предприятий, расположенные в разных городах и странах, которым нужно обмениваться данными между собой. Услугами глобальных сетей пользуются также и отдельные компьютеры. Крупные компьютеры класса мэйнфреймов обычно обеспечивают доступ к корпоративным данным, в то время как персональные компьютеры используются для доступа к корпоративным данным и публичным данным Internet. Широкое распространение корпоративных сетей, которое сегодня стало очевидной тенденцией, приводит к существенным изменениям в архитектуре объединенных вычислительных сетей, в том числе Интернета.

Сегодняшние корпоративные вычислительные сети изначально возникли как островки локальных сетей, связанные друг с другом тоненькими мостиками межсетевых коммуникаций. Простая магистраль Ethernet с небольшой полосой пропускания вполне удовлетворяла тем требованиям, которые предъявлялись к ней при таком взаимодействии между сетями. Однако по мере того, как все большая часть информации и услуг сосредотачивалась на мощных централизованных серверах, перегруженные маршрутизаторы сетевой магистрали превратились в ее самое узкое место и начали существенно ограничивать взаимодействие между сетями.

Альтернативой технологии Ethernet является технология асинхронного режима передачи (Asynchronous Transfer Mode, АТМ), разработанная как единый универсальный транспорт для нового поколения сетей с интеграцией услуг, которые называются широкополосными сетями ISDN. Технология АТМ с самого начала разрабатывалась как технология, способная обслужить все виды трафика в соответствии с их требованиями.

По планам разработчиков единообразие, обеспечиваемое АТМ, будет состоять в том, что одна транспортная технология сможет обеспечить несколько перечисленных ниже возможностей.

Передачу в рамках одной транспортной системы компьютерного и мультимедийного (голос, видео) трафика, чувствительного к задержкам, причем для каждого вида трафика качество обслуживания будет соответствовать его потребностям.

Иерархию скоростей передачи данных, от десятков мегабит до нескольких гигабит в секунду с гарантированной пропускной способностью для ответственных приложений.

Общие транспортные протоколы для локальных и глобальных сетей.

Сохранение имеющейся инфраструктуры физических каналов или физических протоколов: T1/E1, T3/E3, SDH STM-n, FDDI.

Взаимодействие с унаследованными протоколами локальных и глобальных сетей: IP, SNA, Ethernet, ISDN.

Сеть ATM имеет классическую структуру крупной территориальной сети - конечные станции соединяются индивидуальными каналами с коммутаторами нижнего уровня, которые в свою очередь соединяются с коммутаторами более высоких уровней. Коммутаторы ATM пользуются 20-байтными адресами конечных узлов для маршрутизации трафика на основе техники виртуальных каналов. Для частных сетей ATM определен протокол маршрутизации PNNI (Private NNI), с помощью которого коммутаторы могут строить таблицы маршрутизации автоматически. В публичных сетях AТМ таблицы маршрутизации могут строиться администраторами вручную, как и в сетях Х.25, или могут поддерживаться протоколом PNNI.

Коммутация пакетов происходит на основе идентификатора виртуального канала (Virtual Channel Identifier, VCI), который назначается соединению при его установлении и уничтожается при разрыве соединения. Адрес конечного узла ATM, на основе которого прокладывается виртуальный канал, имеет иерархическую структуру, подобную номеру в телефонной сети, и использует префиксы, соответствующие кодам стран, городов, сетям поставщиков услуг и т. п., что упрощает маршрутизацию запросов установления соединения, как и при использовании агрегированных IP-адресов в соответствии с техникой CIDR. Виртуальные соединения могут быть постоянными (Permanent Virtual Circuit, PVC) и коммутируемыми (Switched Virtual Circuit, SVC). Для ускорений коммутации в больших сетях используется понятие виртуального пути - Virtual Path, который объединяет виртуальные каналы, имеющие в сети ATM общий маршрут между исходным и конечным узлами или общую часть маршрута между некоторыми двумя коммутаторами сети. Идентификатор виртуального пути (Virtual Path Identifier, VPI) является старшей частью локального адреса и представляет собой общий префикс для некоторого количества различных виртуальных каналов. Таким образом, идея агрегирования адресов в технологии ATM применена на двух уровнях - на уровне адресов конечных узлов (работает на стадии установления виртуального канала) и на уровне номеров виртуальных каналов (работает при передаче данных по имеющемуся виртуальному каналу).

Соединения конечной станции ATM с коммутатором нижнего уровня определяются стандартом UNI (User Network Interface). Спецификация UNI определяет структуру пакета, адресацию станций, обмен управляющей информацией, уровни протокола ATM, способы установления виртуального канала и способы управления трафиком. В настоящее время принята версия UNI4.0, но наиболее распространенной версией, поддерживаемой производителями оборудования,является версия UNI 3.1.

Стандарт ATM не вводит свои спецификации на реализацию физического уровня. Здесь он основывается на технологии SDH/SONET, принимая ее иерархию скоростей. В соответствии с этим начальная скорость доступа пользователя сети - это скорость ОС-3 155 Мбит/с. Организация ATM Forum определила для ATM не все иерархии скоростей SDH, а только скорости ОС-З и ОС-12 (622 Мбит/с). На скорости 155 Мбит/с можно использовать не только волоконно-оптический кабель, но и неэкранированную витую пару категории 5. На скорости 622 Мбит/с допустим только волоконно-оптический кабель, причем как SMF, так и MMF. Имеются и другие физические интерфейсы к сетям ATM, отличные от SDH/SONET. К ним относятся интерфейсы Т1/Е1 и ТЗ/ЕЗ, распространенные в глобальных сетях, и интерфейсы локальных сетей - интерфейс с кодировкой 4В/5В со скоростью 100 Мбит/с (FDDI) и интерфейс со скоростью 25 Мбит/с, предложенный компанией IBM и утвержденный ATM Forum. Кроме того, для скорости 155,52 Мбит/с определен так называемый "cell-based" физический уровень, то есть уровень, основанный на ячейках, а не на кадрах SDH/SONET. Этот вариант физического уровня не использует кадры SDH/SONET, а отправляет по каналу связи непосредственно ячейки формата ATM, что сокращает накладные расходы на служебные данные, но несколько усложняет задачу синхронизации приемника с передатчиком на уровне ячеек.

Все перечисленные выше характеристики технологии ATM не свидетельствуют о том, что это некая "особенная" технология, а скорее представляют ее как типичную технологию глобальных сетей, основанную на технике виртуальных каналов. Особенности же технологии ATM лежат в области качественного обслуживания разнородного трафика и объясняются стремлением решить задачу совмещения в одних и тех же каналах связи и в одном и том же коммуникационном оборудовании компьютерного и мультимедийного трафика таким образом, чтобы каждый тип трафика получил требуемый уровень обслуживания и не рассматривался как "второстепенный".

29. Характеристики сигналов и каналов. Необходимые условия, обеспечива-ющие передачу сигнала по каналу передачи данных.

.2.1 Объём сигнала и ёмкость канала

При решении практических задач в теории связи сигнал характеризуют объёмом , равным произведению трёх его характеристик: длительности сигнала , ширины спектра и превышения средней мощности сигнала над помехой . В таком случае . Если эти характеристики разложить параллельно осям декартовой системы, то получится объём параллелепипеда. Поэтому произведение называется объёмом сигнала.

Длительность сигнала определяет интервал времени его существования.

Ширина спектра сигнала – это интервал частот, в котором размещается ограниченный спектр частот сигнала, т.е. .

Канал связи по своей физической природе в состоянии пропустить эффективно лишь сигналы, спектр которых лежит в ограниченной полосе частот при допустимом диапазоне изменения мощности .

Кроме того, канал связи предоставляется отправителю сообщения на вполне определённое время . Следовательно, по аналогии с сигналом в теории связи введено понятие ёмкости канала , которая определяется: ; .

Необходимым условием передачи сигнала с объёмом по каналу связи, ёмкость которого равна , есть или . Физические характеристики сигнала могут быть изменены, но при этом уменьшение одной из них сопровождается увеличением другой.

5.2.2 Пропускная способность и скорость передачи

Пропускная способность – предельно возможная скорость передачи информации. Предельная пропускная способность зависит от ширины полосы пропускания канала, а также от отношения и определяется по формуле . Это формула Шеннона, которая справедлива для любой системы связи при наличии флуктуационной помехи.

5.2.3 Частотная характеристика канала

Частотной характеристикой канала связи называется зависимость остаточного затухания от частоты. Остаточным затуханием называется разность уровней на входе и выходе канала связи. Если в начале линии имеется мощность , а на её конце – , то затухание в неперах:

.

Аналогично для напряжений и токов:

; .

5.3 Помехоустойчивость канала

Помехоустойчивостью канала называют способность канала связи противостоять воздействию помех. Среди всех возможных видов помех исключительное место занимает так называемая флуктуационная помеха типа «белого шума», состоящая из отдельных весьма кратковременных импульсов (длительность сек.) со случайно изменяющейся амплитудой. «Белый шум» имеет однородный спектр мощности в пределах очень широкой полосы частот.

Возникновение объясняется тепловым движением элементарных частиц. Особая роль «белого шума» - он является основным видом помехи, определяющей чувствительность приёмника. Поэтому в теории передачи информации рассматривается воздействие «белого шума».

5.4 Способы повышения помехоустойчивости

– Увеличение избыточности в передаваемом сообщении, т.е. увеличение ;

– Расширение полосы частот;

– Увеличение ;

– Применение помехоустойчивых кодов;

– За счёт фильтрации полезного сигнала.

30. Основные параметры электрических кабелей.

Кабель КОАКСИАЛЬНЫЙ :: назначение и характеристики
 
Назначение и структура коаксиального кабеля  
Не так давно коаксиальный кабель был самым распространенным типом кабеля. Это объяснялось двумя причинами. Во-первых, он был относительно недорогим, легким, гибким и удобным в применении. А во-вторых, широкая популярность коаксиального кабеля привела к тому, что он стал безопасным и простым в установке. Самый простой коаксиальный кабель состоит из медной жилы (core), изоляции, ее окружающей, экрана в виде металлической оплетки и внешней оболочки. Если кабель, кроме металлической оплетки, имеет и слой фольги, он называется кабелем с двойной экранизацией. При наличии сильных помех можно воспользоваться кабелем с учетверенной экранизацией. Он состоит из двойного слоя фольги и двойного слоем металлической оплетки. Некоторые типы коаксиальных кабелей покрывает металлическая сетка - экран (shield). Он защишает передаваемые по кабелю данные, поглощая внешние электромагнитные сигналы, называемые помехами или шумом. Таким образом, экран не позволяет помехам исказить данные. Электрические сигналы, кодирующие данные, передаются по жиле. Жила-это один провод (сплошная) или пучок проводов. Сплошная жила изготавливается, как правило, из меди. Жила окружена изоляционным слоем, который отделяет ее от металлической оплетки. Оплетка играет роль заземления и защищает жилу от электрических шумов (noise) и перекрестных помех (crosstalk). Перекрестные помехи - это электрические наводки, вызванные сигналами в соседних проводах. Проводящая жила и металлическая оплетка не должны соприкасаться, иначе произойдет короткое замыкание, помехи проникнут в жилу, и данные разрушатся. Снаружи кабель покрыт непроводящим слоем - из резины, тефлона или пластика. Коаксиальный кабель более помехоустойчив, затухание сигнала в нем меньше чем в витой паре. Затухание (attenuation) - это уменьшение величины сигнала при его перемещении по кабелю. Затухание сигнала приводит к ухудшению его качества Как уже говорилось, плетеная защитная оболочка поглощает внешние электромагнитные сигналы, не позволяя им влиять на передаваемые по жиле данные, поэтому коаксиальный кабель можно использовать при передаче на большие расстояния и в тех случаях, когда высокоскоростная передача данных осуществляется на несложном оборудовании.  
   
Типы коаксиальных кабелей  
Существует два типа коаксиальных кабелей:  тонкий коаксиальный кабель;  толстый коаксиальный кабель. Выбор того или иного типа кабеля зависит от потребностей конкретной сети.  
   
Тонкий коаксиальный кабель  

Тонкий коаксиальный кабель - гибкий кабель диаметром около 0,5 см (около 0.25 дюймов). Он прост в применении и годится практически для любого типа сети. Подключается непосредственно к платам сетевого адаптера компьютеров.

Тонкий (thin) коаксиальный кабель способен передавать сигнал на расстояние до 185 м (около 607 футов) без его заметного искажения, вызванного затуханием.

Производители оборудования выработали специальную маркировку для различных типов кабелей. Тонкий коаксиальный кабель относится к группе, которая называется семейством RG-58, его волновое сопротивление равно 50 0м. Волновое сопротивление (impedance) - это сопротивление переменному току, выраженное в омах. Основная отличительная особенность этого семейства - медная жила. Она может быть сплошной или состоять из нескольких переплетенных проводов.

Кабель Описание
RG-58 /LJ Сплошная медная жила
RG-58 A/U Переплетенные провода
RG-58 С/и Военный стандарт для RG-58 A/U
RG-59 Используется для широкополосной передачи (например, в кабельном телевидении)
RG-6 Имеет больший диаметр по сравнению с RG-59, предназначен для более высоких частот, но может применяться и для широкополосной передачи
RG-62 Используется в сетях ArcNet
 
   
Толстый коаксиальный кабель  
Толстый (thick) коаксиальный кабель - относительно жесткий кабель с диаметреом около 1 см (около 0,5 дюймов). Иногда его называют«стандартный Ethernet», поскольку он был первым типом кабеля, применяемым в Ethernet - популярной сетевой архитектуре. Медная жила толстого коаксиального кабеля больше в сечении, чем тонкого. Чем толще жила у кабеля, тем большее расстояние способен преодолеть сигнал. Следовательно, толстый коаксиальный кабель передает сигналы дальше, чем тонкий, - до 500 м (около 1 640 футов). Поэтому толстый коаксиальный кабель иногда используют в качестве основного кабеля [магистрали (backbone)], который соединяет несколько небольших сетей, построенных на тонком коаксиальном кабеле. Для подключения к толстому коаксиальному кабелю применяют специальное устройство - трансивер (transceiver). Трансивер снабжен специальным коннектором, который назван весьма впечатляюще - «зуб вампира» (vampire tap) или «пронзающий ответвитель» (piercing tap). Этот «зуб» проникает через изоляционный слой и вступает в непосредственный физический контакт с проводящей жилой. Чтобы подключить трансивер к сетевому адаптеру, надо кабель трансивера подключить к коннектору AUI-порта сетевой платы. Этот коннектор известен также как DIX-коннектор (Digital Intel Xerox^), в соответствии с названиями фирм-разработчиков, или коннектор DB-15.  
   
Сравнение двух типов коаксиальных кабелей  
Как правило, чем толще кабель, тем сложнее с ним работать. Тонкий коаксиальный кабель гибок, прост в установке и относительно недорог. Толстый кабель трудно гнуть, и, следовательно, его сложнее устанавливать. Это очень существенный недостаток, особенно если необходимо проложить кабель по трубам или желобам. Толстый коаксиальный кабель дороже тонкого, но при этом он передает сигналы на большие расстояния.  
   
Оборудование для подключения коаксиального кабеля  
Для подключения тонкого коаксиального кабеля к компьютерамиспользуются так называемые BNC-коннекторы (British Naval Connector, BNC). В семействе BNC несколько основных компонентов:  BNC - коннектор. BNC - коннектор либо припаивается, либо обжимается на конце кабеля.  BNC Т-коннектор. Т-коннектор соединяет сетевой кабель с сетевой платой компьютера.  BNC 6appeл - коннктор. Баррел-коннектор применяется для сращивания двух отрезков тонкого коаксиального кабеля.  BNC-терминатор. В сети с топологией «шина» для поглощения «свободных» сигналов терминаторы устанавливаются на каждом конце кабеля. Иначе сеть не будет работать.  
   
 
Медный кабель "ВИТАЯ ПАРА", назначение и характеристики
 
Общие положения и классификация кабеля типа" витая пара"
Кабели на основе витых пар с медными проводниками, применяемые в СКС, предназначены для передачи электрических сигналов. Кабель содержит несколько скрученных с различными шагами витых пар проводов и может иметь несколько дополнительных защитных, экранирующих и технологических элементов, которые образуют сердечник. Каждый провод снабжается изоляцией из сплошного или вспененного диэлектрика. Использование последнего несколько снижает удельную массу кабеля и значительно улучшает его частотные свойства, однако приводит к удорожанию готового изделия. На сердечник наложена защитная оболочка в виде шланга, в большем или меньшем объеме предохраняющая витые пары от внешних воздействий и сохраняющая структуру сердечника во время прокладки и эксплуатации. Наличие общей внешней защитной оболочки сердечника является основанием для отнесения рассматриваемой конструкции к классу кабелей. В зависимости от основной области применения и соответственно конструкции, кабельные изделия для СКС на основе витых пар подразделяются на четыре основных вида. Кабели СКС должны отвечать требованиям пожарной безопасности. Более подробно аспекты пожарной безопасности СКС рассмотрены в разделе "Классы пожаростойкости". На основе кабелей "витая пара" могут быть реализованы все три подсистемы СКС, хотя на внешних магистралях их применение для высокоскоростных приложений класса D затруднено ввиду достаточно жестких физических ограничений на максимальную длину сегмента. На основании этого большинство электрических кабелей предназначено для применения внутри здания. Имеется также ограниченная номенклатура кабелей на основе витых пар, которые могут прокладываться между зданиями (так называемые уличные кабели или outdoor- кабели).  
   
Горизонтальный кабель типа "витая пара", конструктивные особенности
Горизонтальный кабель типа "витая пара", предназначен для использования в горизонтальной подсистеме на участке от коммутационного оборудования в кроссовой этажа до информационных розеток рабочих мест. Наиболее распространенные на практике конструкции содержат четыре витые пары. По видам скрутки проводников горизонтального кабеля различают парную и четверочную.  
Рис.1 Виды скруток витых пар: а) парная; б) четверочная  
Четверочная скрутка позволяет добиться меньших внешних габаритов кабеля, большей стабильности его конструкции и лучших электрических характеристик, однако кабель с четверочной скруткой более сложен в производстве и разделке и поэтому достаточно мало распространен в технике СКС. В качестве материала изоляции проводников обычно используется поливинилхлорид, встречаются также другие изоляционные материалы, например, полиолефин, полиэтилен и полипропилен. Применяются как сплошные, так и вспененные материалы, причем последние позволяют получить несколько лучшие электрические характеристики, однако являются более дорогими и применяются преимущественно в кабелях с верхней граничной частотой выше 100 МГц. С целью снижения уровня затухания проводники горизонтального кабеля изготавливаются из монолитной (Solid) медной проволоки. Отдельные витые пары образуют кабельный сердечник, покрытый общей для всех пар внешней защитной изоляционной оболочкой толщиной примерно 0,5-0,6 мм. Для придания сердечнику определенной структуры в процессе производства и ее сохранения во время эксплуатации может применяться обмотка пар полимерными ленточками или нитями. Облегчение разделки некоторых конструкций кабелей обеспечивается использованием разрывной нити (rip-cord), расположенной под оболочкой. При вытягивании эта нить делает на оболочке продольный разрез и открывает доступ к кабельному сердечнику. Кабели "витая пара", у которых под общей оболочкой находятся три и более четырехпарных элемента, относятся к многопарным. Для изготовления внешней оболочки наряду с обычным поливинил-хлоридом достаточно часто применяется материал типа компаунда, который не содержит галогенов и не поддерживает горения, а также так называемые малодымные полимеры. Полному вытеснению поливинилхлорида из материалов оболочки препятствует тот факт, что переход на оболочку из негорючих материалов немедленно увеличивает цену готового продукта примерно на 20-30 процентов, а не содержащие галогенов компаунды обладают низкой огнестойкостью. Внешняя оболочка окрашивается обычно в серый цвет различных оттенков, встречаются также другие стандартные для конкретного производителя цвета (синий, фиолетовый, белый, красный). Оранжевая окраска обычно указывает на то, что оболочка изготовлена из негорючего материала и кабель может быть использован для прокладки в так называемых plenum-полостях. Конструкции, предназначенные для внешней прокладки, снабжаются полиэтиленовой оболочкой, так как этот материал обладает существенно более высокой влагостойкостью по сравнению с поливинилхлоридом и огнестойким компаундом. На внешнюю оболочку наносятся маркирующие надписи, в которых указывается тип кабеля, диаметр и тип проводников, характеристики оболочки, наименование производителя и его фирменное обозначение кабеля, наименование стандарта и сертифицирующей лаборатории, а также футовые или метровые метки длины. По двум последним параметрам имеются определенные различия между американскими и европейскими кабельными компаниями. Так, основной сертифицирующей лабораторией для американских производителей кабельной продукции является UL Laboratory, европейские обращаются в датскую испытательную организацию DELTA. Американские кабельные компании применяют в основном футовые метки длины, европейские изготовители используют метровый дискрет этого параметра.  
   
Экранированный и неэкранированный горизонтальный кабель типа "витая пара"  
В зависимости от наличия или отсутствия дополнительных экранирующих покрытий отдельных витых пар и/или сердечника в целом горизонтальные кабели из витых пар подразделяются на неэкранированные и экранированные. В свою очередь, среди экранированных конструкций различают кабели с общим внешним экраном, с экранами для каждой пары и с одновременным экранированием отдельных пар и сердечника в целом. Экранирование применяют для повышения переходного затухания (NEXT), снижения уровня ЭМИ и для повышения помехозащищенности. Внешний вид различных вариантов кабелей изображен на рисунке.  
 
Рис.2 Кострукции горизонтальных кабелей  
Наибольшее распространение для экранирования отдельных пар получили металлизированные алюминием тонкие полимерные пленки, причем известны конструкции с ориентацией стороны металлизации как внутрь, так и наружу. Внешние экраны, окружающие кабельный сердечник, изготавливаются из такой же пленки, или же выполняются в виде оплетки из оцинкованной медной проволоки. В состав конструкции пленочного экрана обычно вводится дополнительный тонкий неизолированный медный луженый или оцинкованный дренажный проводник диаметром около 0,5 мм. В функции последнего входит обеспечение электрической непрерывности экрана при случайных разрывах пленки во время прокладки и эксплуатации.  
 
Рис.3 Экранированный и неэкранированный кабель "витая пара" 1. Внешняя оболочка 2. Витая пара 3. Общий экран 4. Дренажный проводник 5. Экран витой пары
 
На практике получили достаточно широкое распространение кабели "витая пара" с общим пленочным экраном, который дополняется оплеткой. Пленочные экраны хорошо защищают кабель от высокочастотных помех (RFI), а экраны в виде оплетки - от низкочастотных (EMI), то есть двухслойный экран рассматриваемого вида обеспечивает надежное экранирование кабельного сердечника во всем диапазоне частот.  
Условное обозначение Экран Цель экранирования
Основное Альтернативное
UTP - Отсутствует -
STP - Экранирование каждой пары - Снижение уровня ЭМИ - Повышение защищенности от внешних помех - Повышение переходного затухания
- PiMF Индивидуальный пленочный экран каждой пары
S/UTP STP, FTP Общий экран для всех пар - Снижение уровня ЭМИ - Повышение защищенности от внешних помех
S/STP STP, S-STP Экранирование каждой пары плюс общий экран вокруг всех пар - Снижение уровня ЭМИ - Повышение защищенности от внешних помех - Повышение переходного затухания - Увеличение механической прочности


Областью применения кабелей S/UTP является построение горизонтальной подсистемы СКС при значительном уровне внешних наводок (производственные цеха и другие помещения с источниками сильных электромагнитных полей) или при повышенных требованиях к безопасности кабельной системы (защита от несанкционированного доступа).
S/STP-кабели обладают в сравнении с STP улучшенными характеристиками по защите от внешних помех и по уровню ЭМИ, однако основным их преимуществом перед другими конструктивными решениями являются значительно более высокое (на 10 ... 15 дБ и более при условии правильного монтажа) значение NEXT.
На сегодняшний день считается, что обеспечить передачу линейных сигналов с тактовой частотой свыше 250-300 МГц на требуемое стандартами расстояние 90 м можно только с использованием конструкции S/STP.

STP- и S-STP-кабели следует применять во всех случаях, перечисленных для S/UTP-кабелей, в тех ситуациях, когда:

 требуется получение кабельных сегментов, превышающих по длине 90 м;

 при построении систем передачи данных, для которых электрические характеристики кабелей категории 5 являются недостаточными;

 должны выполняться повышенные требования по защите от несанкционированного доступа к передаваемой информации.
Хотя параметры кабелей с индивидуальной экранировкой каждой пары могут существенно превосходить требования категории 5 (особенно по параметру NEXT и соответственно по параметру ACR), следует иметь в виду, что пока не существует стандартов ни на увеличенные длины сегментов, ни на сети, для работы которых электрические характеристики неэкранированных витых пар категории 5 являются недостаточными.

UTP-кабели в сравнении с экранированными обладают следующими преимуществами:

 меньшая стоимость;

 меньшая трудоемкость монтажа и эксплуатации;

 отсутствие повышенных требований к внутреннему заземляющему контуру здания;

 лучшие массогабаритные показатели;

 меньший радиус изгиба.

Основными преимуществами экранированных конструкций являютсяпотенциально лучшая защита от внешних электромагнитных наводок, повышенная механическая прочность в случаях применения оплеточных экранов и более эффективная защита от несанкционированного доступа к передаваемой информации.
Высокая теплопроводность экранов обеспечивает эффективный отвод тепла, которое возникает в проводниках в процессе передачи информации из-за протекания электрического тока.
На основании этого некоторые производители гарантируют для производимых ими экранированных конструкций меньшее затухание по сравнению с неэкранированными.
Сравнительная характеристика некоторых механических и эксплуатационных параметров основных вариантов конструкции четырехпарных горизонтальных кабелей приведена в таблице.

Тип кабеля UTP STP S-UTP S-UTP S-STP
Кат. 5 Кат. 6 Пленочный экран Комбинированный экран
Масса, кг/км 30-33 34-37 65-85 82-88
Внешний диаметр, мм 4.9 5.2 5.4 6.2 7.6 8.0
Рабочий диапазон температур, С -20 - +60, +70
Радиус изгиба, мм 30-35 35-40 40-45
 
Электрические характеристики горизонтального кабеля  
Смотрите раздел "Медные кабели типа витая пара - электрические характеристики"  
Механические характеристики горизонтального кабеля  
Смотрите раздел "Медные кабели типа витая пара - механические характеристики"  
Упаковка горизонтальных кабелей  
Горизонтальные кабели поставляются в двух различных видах упаковки: в картонных коробках и на катушках. При поставке в картонной коробке используется длина 305 м (1000 футов), кабель наматывается на внутреннюю картонную бобину или формируется в виде самонесущей обмотки. Внешний конец обмотки выводится наружу через пластмассовую втулку. На поверхность картонной коробки наносится информация о предприятии-изготовителе, типе кабеля и значение метки длины внутреннего конца. Коробочная поставка очень популярна среди монтажников СКС, так как коробки очень удобны при хранении и транспортировке, а также позволяют выполнять размотку без применения дополнительных приспособлений. Кабель на катушках имеет стандартное значение длины 500 и 1000 м. В принципе возможны и большие длины, однако масса 1000-метровой катушки достигает 50 кг и более, что делает ее неудобной при работе на объекте. Основным преимуществом катушечной поставки является несколько меньшее количество отходов. Меньшая популярность этой упаковки объясняется неудобством транспортировки и складского хранения, а также желательностью применения для размотки специальных приспособлений. Катушки изготавливаются из пластмассы, дерева или фанеры.  
   
Магистральный кабель, конструктивные особенности  
Магистральный кабель предназначен для использования в магистральных подсистемах СКС для связи между собой помещений кроссовых. В подсистеме внешних магистралей обычно большая часть маршрута прокладывается горизонтально, в подсистеме внутренних магистралей - вертикально. С целью снижения коэффициента затухания проводники изготавливаются из монолитной медной проволоки. В отличие от горизонтального кабеля магистральные конструкции содержат более четырех витых пар и поэтому часто называются многопарными. Аналогично горизонтальным кабелям они различаются по категориям от 3 до 5, причем магистральные кабели категории 4 встречаются на практике очень редко. Конструкция кабеля зависит от его емкости.
Категории кабеля Количество пар
25,50,75,100,200,300,600,900,1800
25,50,100


При числе пар до 25 они помещаются в общую оболочку.
В случае емкости свыше 25 пар они разбиваются на пучки по 25 пар в каждом, совокупность которых образует кабельный сердечник.

 
 
Рис.4 Многопарные магистральные кабели: а) 25-парный кабель категории 5 б) 300-парный кабель категории 3  
В некоторых конструкциях в качестве основы сердечника использован центральный стеклопластиковый стержень. Провода одного пучка скрепляются полиэтиленовыми ленточками. Снаружи сердечник защищается общей диэлектрической оболочкой. Кроме неэкранированных магистральных кабелей в ограниченном количестве производятся S/UTP-конструкции, у которых под внешней диэлектрической оболочкой находится экран, закрывающий кабельный сердечник. Аналогично горизонтальным кабелям на их оболочку наносится маркировка, включающая в себя тип, данные по диаметру проводников и их количеству, наименование тестирующей лаборатории, а также футовые или метровые метки длины. Погонная масса 25-парного кабеля категории 5 равна обычно ISO-190 кг/км, рабочий диапазон температур составляет от -20 до +60°С. Кроме многопарных ряд фирм предлагает так называемые многоэлементные (Multi Unit) кабели. Они отличаются тем, что кабельный сердечник образуют не отдельные витые пары, а двух- или четырехпарные элементы, аналогичные по конструкции горизонтальному кабелю и снабженные индивидуальной защитной оболочкой. Для увеличения прочности и устойчивости к различным механическим воздействиям в качестве основы сердечника многоэлементного кабеля может применяться центральный стеклопластиковый пруток. Магистральные кабели подразделяются на кабели внутренней и внешней прокладки. Основным отличием кабеля внешней прокладки от внутриобъектного является применение специальных мер и конструктивных решений по защите кабельного сердечника от попадания в него влаги. Наиболее часто эта проблема решается использованием внешней полиэтиленовой оболочки. Некоторые типы телефонных кабелей имеют гелиевое заполнение внутренних пустот сердечника. Дополнительная защита кабельного сердечника от попадания влаги и механических воздействий выполняется броней из алюминиевой или стальной гофрированной ленты.  
   
Другие кабельные изделия СКС  
Кабель для шнуров  
Кабель для шнуров, как это следует из его названия, предназначен для изготовления их него коммутационных и оконечных шнуров. Он содержит в большинстве случаев четыре витых пары и по конструкции очень похож на горизонтальный кабель. Основные отличия между этими разновидностями кабельных изделий состоят в том, что в кабеле для шнуров:  для придания устойчивости к многократным изгибам и продления срока эксплуатации проводники изготавливаются из семи тонких перевитых медных проволок диаметром примерно по 0,2 мм каждая (Stranded);  изоляционная оболочка проводника имеет несколько большую по сравнению с горизонтальным кабелем толщину (около 0,25 мм);  для изготовления внешней оболочки выбирается материал с повышенной гибкостью. Кабель для шнуров производится в экранированном и неэкранированном вариантах. Цветовая маркировка проводников должна соответствовать цветовой маркировке горизонтального кабеля, хотя у американских производителей встречаются другие варианты кодировки. На внешнюю оболочку наносятся практически такие же маркирующие и идентифицирующие надписи, а также метки длины. Следует отметить, что изготовленные из кабеля рассматриваемой группы шнуры используются в кроссовых и рабочих помещениях пользователей, которые не относятся к классу plenum-полостей. На основании этого основная масса кабелей для шнуров не производится в вариантах с негорючей и малодымной оболочкой.  
Провод для перемычек  
Провод для перемычек, или кроссировочный провод, в большинстве случаев представляет собой одну неэкранированную витую пару категории 3 без внешней защитной оболочки. Проводники изготавливаются из монолитной медной проволоки диаметром 0,51 мм с изоляцией из поливинилхлорида. Один провод перемычки по стандарту TIA/EIA-568A должен быть белого цвета, второй окрашивается сплошным цветом, чаще всего синим или красным. Основным назначением провода является его использование на коммутационных панелях типа 66 с контактами типа IDC 66. В некоторых случаях с его помощью выполняется разводка панелей типа 110. Стандартная упаковка двухпарного кроссировочного провода длиной 305 м (1000 футов) или 201 м (660 футов) представляет собой катушку диаметром около 15 см. Наряду с однопарным кроссировочным проводом существуют также двухпарный, трехпарный и четырехпарный его варианты. Формирование структуры такого провода производится скруткой его витых пар друг с другом. В последнее время некоторые производители начали изготавливать провод для перемычек с 2, 3 и 4 парами в общей защитной оболочке, который по своей конструкции фактически представляет собой классический горизонтальный кабель. По мнению разработчиков, такая оболочка помогает сохранить структуру витков пар между контактами коммутационной панели, и поэтому перемычка, изготовленная из такого провода, может обеспечивать характеристики категории 4 и даже 5.  
Горизонтальные кабели с граничной частотой свыше 100 МГЦ  
В настоящее время на рынке компонентов СКС предлагается ряд типов серийных горизонтальных кабелей, характеристики которых существенно превышают требования стандартов категории 5. Общими чертами неэкранированных конструкций рассматриваемой группы является следующее:  все они обеспечивают получение величины параметра ACR порядка 10 дБ на частотах примерно 150-200 МГц, то есть соответствуют характеристикам кабеля перспективной категории 6;  увеличение параметра ACR достигнуто главным образом за счет улучшения параметра NEXT, хотя определенная доля может быть обеспечена уменьшением погонного затухания;  характеристики кабелей нормируются до частот порядка 350-550 МГц из соображений использования их для передачи сигналов однонаправленных приложений, под которыми на практике в подавляющем большинстве случаев понимается многоканальное эфирное и кабельное телевидение. При этом достаточно четко прослеживается деление рассматриваемых конструкций на два подкласса с граничными частотами, соответственно 350 и 550 МГц. Модели "младшего" подкласса часто отличаются от обычных кабелей категории 5 только несколько лучшими значениями параметра NEXT и PS-NEXT, тогда как высокочастотные изделия имеют наряду с улучшенными характеристиками переходного затухания также меньшее затухание. Дальнейшее увеличение рабочих частот горизонтальных кабелей обычных СКС без индивидуальной подборки параметров отдельных пар с возможностью их использования для сетей передачи данных (то есть по критерию ACR=10 дБ) по мнению многих специалистов при современном уровне техники возможно только на экранированных конструкциях. Отметим, что многие кабельные заводы выпускают экранированные кабели из витых пар, характеристики которых нормируются на частотах вплоть до 1 ГГц. Основной областью их применения считаются системы SOHO и передача сигналов приложений класса F. Для уменьшения затухания применяется увеличение диаметра медной жилы проводника до 0,55 мм против типовых для витой пары категории 5 значений 0,51-0,53 мм и использования изоляционных покрытий с уменьшенными диэлектрическими потерями, в частности, из вспененных материалов. Этим, кстати, объясняется несколько большая погонная масса и внешний диаметр по сравнению с кабелями категории 5. Работы по увеличению параметра NEXT ведутся в двух направлениях. Первое из них основано на сохранении структуры сердечника в процессе прокладки и эксплуатации и базируется на введении в состав кабельного сердечника дополнительного элемента, выполняющего функции его силовой основы. В качестве такого элемента может быть использован центральный пластиковый пруток или полиэтиленовый профилированный элемент типа С (Central Crosstalk Cancellation) в форме четырехлучевой звезды в поперечном сечении.  
 
Рис.5 Конструкция горизонтального кабеля  
Последний дополнительно за счет укладки каждой пары в индивидуальный паз разносит их друг от друга, что сопровождается заметным увеличением параметра NEXT. Второе направление основано на поддержании высокой точности балансировки витых пар, то есть шага скрутки. Из соображений сохранения структуры сердечника во время прокладки поставка кабелей рассматриваемого вида выполняется в основном на катушках. Структурные возвратные потери минимизируются ужесточением допусков на возможные флуктуации диаметра жилы, а также эксцентриситет жилы и изоляционной оболочки (до +1% против типовых +3% для конструкций категории 5).  

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.