Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Регенерация нейронов ЦНС



Поврежденные нервные волокна головного и спинного мозга не регенерируют, хотя, в теории, обладают такой способностью. исключение составляют аксоны нейросекреторных нейронов гипоталамуса. Регенерацию волокон в центральной нервной системе можно вызвать в эксперименте, пересадив в нее периферический нерв. Возможно, регенерации нервных волокон в центральной нервной системе не происходит потому, что глиоциты без базальной мембраны лишены хемотаксических факторов, необходимых для проведения регенерирующих аксонов. К тому же, в ЦНС наблюдается неблагоприятное влияние микроокружения. Однако при малых травмах центральной нервной системы возможно частичное восстановление ее функций, обусловленное пластичностью нервной ткани, хотя, обычно, после повреждения нейрона в ЦНС микроглия астроциты и гематогические макрофаги фагоцитируют детрит в участке разрушенного волокна. На его месте пролиферативные астроциты образуют плотный глиальный рубец.

Стоит отметить, что в ЦНС к регенерации отрезанных отростков способны клетки Гольджи 1-го типа с длинными аксонами. Клетки Гольджи 2-го типа с короткими отростками, по-видимому, не способны к восстановлению утраченных отростков. Однако и в случае регенерации последняя носит абортивный характер, так как полному восстановлению перерезанных аксонов мешает сложный соединительнотканноглиальный рубец, возникающий на месте травмы или перерезки. В последнее время в опытах на млекопитающих, задерживая рост глиальной части рубца подкожным введением животному пиромена, удавалось наблюдать регенерацию некоторых перерезанных нервных пучков спинного и головного мозга.

Патологическое деление нервных клеток

Особый интерес представляет проблема образования раковых опухолей в нервной системе. Этот процесс представляет собой патологические изменения, происходящие в клетках нервной ткани, приводящие к непрерывному их делению. Никаких других своих функций такая клетка не выполняет, только делится. Причём скорость деления раковых клеток быстрая. Вновь образованные клетки заполняют собой все нервные пути, ткани и органы, препятствуя их нормальному функционированию, и сами продолжают процесс деления.

Нейрогенез

Нейрогенез у взрослых -- это явление, относительно недавно признанное научным сообществом, которое опровергло существовавшую долгое время научную теорию о статичности нервной системы и её неспособности к регенерации. В течение многих лет только небольшое число нейробиологов рассматривало возможность нейрогенеза. Однако, в последние десятилетия, благодаря развитию иммуногистохимических методов и конфокальной микроскопии, сначала было признано наличие нейрогенеза у певчих птиц, а затем были получены неоспоримые доказательства нейрогенеза в субвентрикулярной зоне и субгранулярной зоне (части зубчатой извилины гиппокампа) у млекопитающих и в том числе у людей. Некоторые авторы предполагают, что образование новых нейронов у взрослых также может происходить и в других областях мозга, включая неокортекс приматов, другие ставят под вопрос научность этих исследований, а некоторые считают что новые клетки могут оказаться глиальными клетками.

 

Существует гипотеза, что микроокружение в субвентрикулярной зоне и в зубчатой извилине гиппокампа (так называемая нейрогенная ниша) обладает специфическими факторами, которые необходимы для деления клеток предшественников нейронов, а также дифференцировки и интеграции новообразовавшихся нейронов. Около 50 % новорождённых клеток погибает по механизмам запрограммированной клеточной гибели, но если молодые нейроны образуют синаптические контакты или получают необходимую трофическую поддержку, то они могут выживать в течение долгого времени.

Нейрогенез у взрослых является одним из механизмов пластичности мозга, выражающихся в увеличении количества нейронов и структурной перестройке нейрональных сетей, образовании новых синапсов и изменении синаптической передачи. Добавление новых клеток в обонятельные луковицы и в зубчатую извилину гиппокампа заканчивается функциональной интеграцией клеток с уникальными характеристиками. Например, молодые гранулярные клетки в зубчатой извилине имеют более низкий порог долговременной потенциации, чем более старые клетки. Предполагается, что эта пластичность важна для процессов обучения и памяти.




©2015 studopedya.ru Все права принадлежат авторам размещенных материалов.