Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Четвертое поколение (1972–1984)



Поколения ЭВМ

В качестве узловых моментов, определяющих появление нового поколения ВТ, обычно выбираются революционные идеи или технологические прорывы, кардинально изменяющие дальнейшее развитие средств автоматизации вычислений. Одной из таких идей принято считать концепцию вычислительной машины с хранимой в памяти программой, сформулированную Джоном фон Нейманом. Взяв ее за точку отсчета, историю развития ВТ можно представить в виде трех этапов:

  1. До Неймановского периода;
  2. Эры вычислительных машин и систем с фон-неймановской архитектурой;
  3. Пост Неймановской эпохи — эпохи параллельных и распределенных вычислений, где наряду с традиционным подходом все большую роль начинают играть отличные от фон-неймановских принципы организации вычислительного процесса.

Значительно большее распространение, однако, получила привязка поколений к смене технологий. Принято говорить о «механической» эре (нулевое поколение) и последовавших за ней пяти поколениях ВС. Первые четыре поколения традиционно связывают с элементной базой вычислительных систем: электронные лампы, полупроводниковые приборы, интегральные схемы малой степени интеграции (ИМС), большие (БИС), сверхбольшие (СБИС) и ультрабольшие (УБИС) интегральные микросхемы. Пятое поколение в общепринятой интерпретации ассоциируют не столько с новой элементной базой, сколько с интеллектуальными возможностями ВС. Работы по созданию ВС пятого поколения велись в рамках четырех достаточно независимых программ, осуществлявшихся учеными США, Японии, стран Западной Европы и стран Совета экономической взаимопомощи. Ввиду того, что ни одна из программ не привела к ожидаемым результатам, разговоры о ВС пятого поколения понемногу утихают. Трактовка пятого поколения явно выпадает из «технологического» принципа. С другой стороны, причисление всех ВС на базе сверхбольших интегральных схем (СБИС) к четвертому поколению не отражает принципиальных изменений в архитектуре ВС, произошедших за последние годы. Чтобы в какой-то мере проследить роль таких изменений, воспользуемся несколько отличной трактовкой. Выделим шесть поколений ВС. Попытаемся кратко охарактеризовать каждое из них, выделяя наиболее значимые события.

 

Первое поколение (1937–1953)

На роль первой в истории электронной вычислительной машины в разные периоды претендовало несколько разработок. Общим у них было использование схем на базе электронно-вакуумных ламп вместо электромеханических реле. Предполагалось, что электронные ключи будут значительно надежнее, поскольку в них отсутствуют движущиеся части, однако технология того времени была настолько несовершенной, что по надежности электронные лампы оказались ненамного лучше, чем реле. Однако у электронных компонентов имелось одно важное преимущество: выполненные на них ключи могли переключаться примерно в тысячу раз быстрее своих электромеханических аналогов.

Первой электронной вычислительной машиной чаще всего называют специализированный калькулятор ABC (Atanasoff–Berry Computer). Разработан он был в период с 1939 по 1942 год профессором Джоном Атанасовым (John V. Atanasoff, 1903–1995) совместно с аспирантом Клиффордом Берри (Clifford Berry, 1918–1963) и предназначался для решения системы линейных уравнений (до 29 уравнений с 29 переменными). ABC обладал памятью на 50 слов длиной 50 бит, а запоминающими элементами служили конденсаторы с цепями регенерации. В качестве вторичной памяти использовались перфокарты, где отверстия не перфорировались, а прожигались. ABC стал считаться первой электронной ВМ, после того как судебным решением были аннулированы патенты создателей другого электронного калькулятора — ENIAC. Необходимо все же отметить, что ни ABC, ни ENIAC не являются вычислительным машинами в современном понимании этого термина и их правильней классифицировать как калькуляторы.

Вторым претендентом на первенство считается вычислитель Colossus, построенный в 1943 году в Англии около Кембриджа. Изобретателем машины был профессор Макс Ньюмен (Max Newman, 1987–1984), а изготовил его Томми Флауэрс (Tommy Flowers, 1905–1998). Colossus был создан для расшифровки немецких кодов. В состав команды разработчиков входил также Алан Тьюринг. Машина была выполнена в виде восьми стоек высотой 2,3 м, а общая длина ее составляла 5,5 м. В логических схемах машины и в системе оптического считывания информации использовалось 2400 электронных ламп. Информация считывалась с пяти вращающихся длинных бумажных колец со скоростью 5000 символов/с.

Наконец, третий кандидат на роль первой электронной ВМ — уже упоминавшийся программируемый электронный калькулятор общего назначения ENIAC (Electronic Numerical Integrator and Computer — электронный цифровой интегратор и вычислитель). Идея калькулятора, выдвинутая в 1942 году Джоном Мочли (John J. Mauchly, 1907–1980) из университета Пенсильвании, была реализована им совместно с Преспером Эккертом (J. Presper Eckert, 1919–1995) в 1946 году. С самого начала ENIAC активно использовался в программе разработки водородной бомбы. Машина эксплуатировалась до 1955 года и применялась для генерирования случайных чисел, предсказания погоды и проектирования аэродинамических труб.

Вычислительную машину ENIAC характеризовали следующие показатели: тактовая частота – 100 КГц; быстродействие – 5000 и 350 операций в секунду соответственно при сложении и умножении десятиразрядных десятичных чисел; количества электронных ламп и электромагнитных реле – 18000 и 1500, соответственно; потребляемая мощность – 150 киловатт; вес – 27 тонн; занимаемая площадь – 200 м2. Создание машины ENIAC оценивается в 486000 долл., эта сумма превысила начальный бюджет на 225%.

Машина ENIAC – это вручную перестраиваемая конфигурация, состоявшая из трех подсистем: управляющей, собственно вычислительной и ввода-вывода. Управляющая подсистема была представлена композицией из главного программного устройства (ГПУ) и двух дополнительных программных устройств (ДПУ). Вычислительная подсистема формировалась из 20 устройств накопления и суммирования (УНС), устройства умножения (УУМ), устройства деления и извлечения квадратного корня (УДК) и трех устройств хранения таблиц (УХТ). Подсистема ввода-вывода состояла из устройств ввода (УВв) и вывода (УВыв) информации.

Когда все лампы работали, инженерный персонал мог настроить ENIAC на новую задачу, вручную изменив подключение 6000 проводов. При пробной эксплуатации выяснилось, что надежность машины чрезвычайно низка — поиск неисправностей занимал от нескольких часов до нескольких суток. По своей структуре ENIAC напоминал механические вычислительные машины. 10 триггеров соединялись в кольцо, образуя десятичный счетчик, который исполнял роль счетного колеса механической машины. Десять таких колец плюс два триггера для представления знака числа представляли запоминающий регистр. (Всего в ENIAC было 20 таких регистров - УНС). Система переноса десятков в накопителях была аналогична предварительному переносу в машине Бэббиджа.

 

 

Анализ ENIAC

Отметим архитектурные достоинства машина ENIAC:

  • SIMD-архитектура, распределенность и иерархия средств управления, смешанный синхронно-асинхронный способ управления вычислениями;
  • параллелизм при обработке данных (допускалась одновременная работа нескольких вычислительных устройств и параллельная обработка десятичных разрядов чисел);
  • ручная реконфигурируемость структуры (ручное программирование «неспециализированной» машины под структуру решаемой задачи);
  • однородность, модульность и масштабируемость (варьируемость количества устройств).

Итак, машина ENIAC обладала совокупностью архитектурных свойств, которые присущи современным высокопроизводительным параллельным вычислительным системам. Проект ENIAC опережал возможности элементной базы (ламповой электроники).

Если исходить из характеристик элементной базы 1940-х годов (а в то время ламповые элементы были самыми быстродействующими), то можно указать на следующие недостатки машины ENIAC:

  • ручное («механическое») трудоемкое программирование ВМ под структуру решаемой задачей (такое программирование длилось несколько часов или даже дней);
  • низкая надежность, обусловленная применением большого числа ламп, электромагнитных реле, механических переключателей и кабелей, а также и ручным программированием структуры машины;
  • малая емкость оперативной памяти (334 десятиразрядных десятичных чисел);
  • громоздкость и дороговизна машины (18000 электронных ламп, 486000 долларов!):
  • аппаратурная избыточность.

Машина ENIAC – эта первая электронная ВМ, которая нашла практическое применение и была для своего времени инструментом решения сложных задач.

 


В 1945 году группой Д. Мочли выполнялись работы по конструированию машины EDVAC. В разработке с 1945 года принимал участие Дж. фон Нейман в качестве консультанта. В 1947 г. группа Д. Мочли распалась, тем не менее, другие специалисты Электротехнической школы Мура завершили проект. Машина EDVAC вступила в строй в 1950 г. (хотя усовершенствования вносились до 1952г.)

Отметим некоторые показатели EDVAC: тактовая частота – 1 МГц (на порядок выше, чем в ENIAC); быстродействие – 1000 операций в секунду над 32-разрядными двоичными числами; емкость оперативной памяти – 32768 байт; количество электронных ламп – 3000.

 

Функциональная структура машины EDVAC

 

Машина EDVAC состояла из центрального арифметического устройства (АУ), оперативного запоминающего устройства (ОЗУ), внешних запоминающих устройств (ВЗУ), входного и выходного узлов (УВх, УВых) и центрального управляющего устройства (УУ). В отличие от ENIAC данная ЭВМ была последовательной машиной, она не могла выполнять двух логических или арифметических операций одновременно. В то время это было технико-экономически обосновано.

Арифметическое устройство предназначалось для выполнения операций сложения, вычитания, умножения, деления, извлечения квадратного корня, для преобразования чисел из двоичной системы счисления в десятичную и обратно, для пересылок чисел из одних регистров АУ в другие, а также между ОЗУ и регистрами АУ и для осуществления выбора одного из двух чисел в зависимости от знака третьего числа. Последняя операция использовалась для передачи управления (условного перехода) от одной команды программы к другой. Числа в АУ обрабатывались последовательно, начиная с последнего значащего разряда, и в каждый момент времени выполнялось только одна операция. Регистры АУ – это линии задержки на одно 32-разрядное двоичное слово.

Устройство управления предназначалось для координации работы остальных устройств ЭВМ, в частности, оно формировало поток команд в АУ. Синхронизация работы всех устройств ЭВМ осуществлялась от единого источника импульсов, названного “часами” (сейчас, это генератор тактовых или синхронизирующих импульсов).

В машине EDVAC первый двоичный разряд каждого слова использовался для идентификации команд и чисел, причем единица соответствовала команде, а нуль – числу. В EDVAC использовались одноадресные команды, для задания кода операции и адреса операнда в ОЗУ отводилось соответственно 8 и 13 разрядов.

Таким образом, машина EDVAC была полностью автоматическим программируемым вычислительным средством.

 

Анализ машины EDVAC

Машина EDVAC имела жесткую функциональную структуру. По своей архитектуре EDVAC относится к классу SISD (Single Instruction stream / Single Data stream), если следовать классификации М. Флинна. В EDVAC одиночный поток команд обрабатывал одиночный поток данных. Три поколения ЭВМ – это по сути эволюционные модификации машины с архитектурой SISD.

Подчеркнем архитектурные особенности машины EDVAC:

  • SISD-архитектура, синхронный метод управления устройствами;
  • автоматизация вычислений (возможность хранения программы в памяти и ее автоматической модификации);
  • последовательный способ обработки информации;
  • фиксированность структуры (невозможность даже ручного реконфигурирования, за исключением ВЗУ);
  • конструктивная неоднородность.

Архитектурные решения, положенные в основу ЭВМ, привели к простоте ее реализации: потребовалось около 3000 электронных ламп (вместо 18000 в ENIAC). Уровень сложности и достигнутые технические характеристики (показатели производительности, емкости памяти и надежности) ЭВМ вполне отвечали уровню техники и потребностям 50-х годов 20 столетия. В самом деле, машина EDVAC характеризовалась следующими параметрами:

  • количество двоичных разрядов для представления чисел – 32,
  • тактовая частота – 1 МГц,
  • емкость оперативной памяти – бит = 32 Кбайт.

Несмотря на последовательный характер работы, вычислительная машина EDVAC не уступала по производительности ENIAC. Например, быстродействия ENIAC и EDVAC при выполнении операций умножения оценивались соответственно величинами: 357 опер./с (над 10-разрядными десятичными числами) и 1000 опер./с (над 32-разрядными двоичными числами).

Таким образом, электронные вычислительные машины ENIAC и EDVAC отражают дуализм в развитии цифровых средств информатики, говоря иначе, констатируют неизбежность двух начал: параллельных и последовательных архитектур.

 

Второе поколение (1954–1962)

 

Второе поколение характеризуется рядом достижений в элементной базе, структуре и программном обеспечении. Принято считать, что поводом для выделения нового поколения ВМ стали технологические изменения, и, главным образом, переход от электронных ламп к полупроводниковым диодам и транзисторам со временем переключения порядка 0,3 мс.

Первой ВМ, выполненной полностью на полупроводниковых диодах и транзисторах, стала TRADIC (TRAnisitor DIgital Computer), построенная в Bell Labs по заказу военно-воздушных сил США как прототип бортовой ВМ. Машина состояла из 700 транзисторов и 10 000 германиевых диодов. За два года эксплуатации TRADIC отказали только 17 полупроводниковых элементов, что говорит о прорыве в области надежности, по сравнению с машинами на электронных лампах. Другой достойной упоминания полностью полупроводниковой ВМ стала TX-0, созданная в 1957 году в Массачусетсском технологическом институте.

Технологический прогресс дополняют важные изменения в архитектуре ВМ. Прежде всего, это касается появления в составе процессора ВМ индексных регистров, что позволило упростить доступ к элементам массивов. Прежде, при циклической обработке элементов массива, необходимо было модифицировать код команды, в частности хранящийся в нем адрес элемента массива. Как следствие, в ходе вычислений коды некоторых команд постоянно изменялись, что затрудняло отладку программы. С использованием индексных регистров адрес элемента массива вычисляется как сумма адресной части команды и содержимого индексного регистра. Это позволяет обратиться к любому элементу массива, не затрагивая код команды, а лишь модифицируя содержимое индексного регистра.

Вторым принципиальным изменением в структуре ВМ стало добавление аппаратного блока обработки чисел в формате с плавающей запятой. До этого обработка вещественных чисел производилась с помощью подпрограмм, каждая из которых имитировала выполнение какой-то одной операции с плавающей запятой (сложение, умножение и т. п.), используя для этой цели обычное целочисленное арифметико-логическое устройство.

Третье значимое нововведение в архитектуре ВМ — появление в составе вычислительной машины процессоров ввода/вывода, позволяющих освободить центральный процессор от рутинных операций по управлению вводом/выводом и обеспечивающих более высокую пропускную способность тракта «память — устройства ввода/вывода» (УВВ).

Наконец, нельзя не отметить значительные события в сфере программного обеспечения, а именно создание языков программирования высокого уровня: Фортрана (1956), Алгола (1958) и Кобола (1959).

Третье поколение (1963–1972)

 

Третье поколение ознаменовалось резким увеличением вычислительной мощности ВМ, ставшим следствием больших успехов в области архитектуры, технологии и программного обеспечения. Основные технологические достижения связаны с переходом от дискретных полупроводниковых элементов к интегральным микросхемам и началом применения полупроводниковых запоминающих устройств, начинающих вытеснять ЗУ на магнитных сердечниках. Существенные изменения произошли и в архитектуре ВМ. Это, прежде всего, микропрограммирование как эффективная техника построения устройств управления сложных процессоров, а также наступление эры конвейеризации и параллельной обработки. В области программного обеспечения определяющими вехами стали первые операционные системы и реализация режима разделения времени.

В первых ВМ третьего поколения использовались интегральные схемы с малой степенью интеграции (small-scale integrated circuits, SSI), где на одном кристалле размещается порядка 10 транзисторов. Ближе к концу рассматриваемого периода на смену SSI стали приходить интегральные схемы средней степени интеграции (medium-scale integrated circuits, MSI), в которых число транзисторов на кристалле увеличилось на порядок. К этому же времени относится повсеместное применение многослойных печатных плат. Все шире востребуются преимущества параллельной обработки, реализуемые за счет множественных функциональных блоков, совмещения во времени работы центрального процессора и операций ввода/вывода, конвейеризации потоков команд и данных.

В 1964 году Сеймур Крей (Seymour Cray, 1925–1996) построил вычислительную систему CDC 6600, в архитектуру которой впервые был заложен функциональный параллелизм. Благодаря наличию 10 независимых функциональных блоков, способных работать параллельно, и 32 независимых модулей памяти удалось достичь быстродействия в 1 MFLOPS (миллион операций с плавающей запятой в секунду). Пятью годами позже Крей создал CDC 7600 с конвейеризированными функциональными блоками и быстродействием 10 MFLOPS. CDC 7600 называют первой конвейерной вычислительной системой (конвейерным процессором). Революционной вехой в истории ВТ стало создание семейства вычислительных машин IBM 360, архитектура и программное обеспечение которых на долгие годы служили эталоном для последующих больших универсальных ВМ (mainframes). В машинах этого семейства нашли воплощение многие новые для того периода идеи, в частности: предварительная выборка команд, отдельные блоки для операций с фиксированной и плавающей запятой, конвейеризация команд, кэш-память. К третьему поколению ВС относятся также первые параллельные вычислительные системы: SOLOMON корпорации Westinghause и ILLIAC IV — совместная разработка Иллинойского университета и компании Burroughs. Третье поколение ВТ ознаменовалось также появлением первых конвейерно-векторных ВС: TI-ASC (Texas Instruments Advanced Scientific Computer) и STAR-100 фирмы СВС.

 

Четвертое поколение (1972–1984)

 

Отсчет четвертого поколения обычно ведут с перехода на интегральные микросхемы большой (large-scale integration, LSI) и сверхбольшой (very large-scale integration, VLSI) степени интеграции. К первым относят схемы, содержащие около 1000 транзисторов на кристалле, в то время как число транзисторов на одном кристалле VLSI имеет порядок 100 000. При таких уровнях интеграции стало возможным уместить в одну микросхему не только центральный процессор, но и вычислительную машину (ЦП, основную память и систему ввода/вывода).

Конец 70-х и начало 80-х годов — это время становления и последующего победного шествия микропроцессоров и микроЭВМ, что, однако, не снижает важности изменений, произошедших в архитектуре других типов вычислительных машин и систем.

Одним из наиболее значимых событий в области архитектуры ВМ стала идея вычислительной машины с сокращенным набором команд (RISC, Redused Instruction Set Computer), выдвинутая в 1975 году и впервые реализованная в 1980 году. В упрощенном изложении суть концепция RISC заключается в сведении набора команд ВМ к наиболее употребительным простейшим командам. Это позволяет упростить схемотехнику процессора и добиться резкого сокращения времени выполнения каждой из «простых» команд. Более сложные команды реализуются как подпрограммы, составленные из быстрых «простых» команд.

В ВМ и ВС четвертого поколения практически уходят со сцены ЗУ на магнитных сердечниках и основная память строится из полупроводниковых запоминающих устройств (ЗУ). До этого использование полупроводниковых ЗУ ограничивалось лишь регистрами и кэш-памятью.

В сфере высокопроизводительных вычислений доминируют векторные вычислительные системы, более известные как суперЭВМ. Разрабатываются новые параллельные архитектуры, однако подобные работы пока еще носят экспериментальный характер. На замену большим ВМ, работающим в режиме разделения времени, приходят индивидуальные микроЭВМ и рабочие станции (этим термином обозначают сетевой компьютер, использующий ресурсы сервера).

 

Пятое поколение (1984–1990)

 

Главным поводом для выделения вычислительных систем второй половины 80-х годов в самостоятельное поколение стало стремительное развитие ВС с сотнями процессоров, ставшее побудительным мотивом для прогресса в области параллельных вычислений. Ранее параллелизм вычислений выражался лишь в виде конвейеризации, векторной обработки и распределения работы между небольшим числом процессоров. Вычислительные системы пятого поколения обеспечивают такое распределение задач по множеству процессоров, при котором каждый из процессоров может выполнять задачу отдельного пользователя.

В рамках пятого поколения в архитектуре вычислительных систем сформировались два принципиально различных подхода: архитектура с совместно используемой памятью и архитектура с распределенной памятью.

 

Шестое поколение (1990–)

 

На ранних стадиях эволюции вычислительных средств смена поколений ассоциировалась с революционными технологическими прорывами. Каждое из первых четырех поколений имело четко выраженные отличительные признаки и вполне определенные хронологические рамки. Последующее деление на поколения уже не столь очевидно и может быть понятно лишь при ретроспективном взгляде на развитие вычислительной техники. Пятое и шестое поколения в эволюции ВТ — это отражение нового качества, возникшего в результате последовательного накопления частных достижений, главным образом в архитектуре вычислительных систем и, в несколько меньшей мере, в сфере технологий.

Поводом для начала отсчета нового поколения стали значительные успехи в области параллельных вычислений, связанные с широким распространением вычислительных систем с массовым параллелизмом. Особенности организации таких систем, обозначаемых аббревиатурой MPP (massively parallel processing), будут рассмотрены в последующих лекциях. Здесь же упрощенно определим их как совокупность большого количества (до нескольких тысяч) взаимодействующих, но достаточно автономных вычислительных машин. По вычислительной мощности такие системы уже успешно конкурируют с суперЭВМ, которые, как ранее отмечалось, по своей сути являются векторными ВС. Появление вычислительных систем с массовым параллелизмом дало основание говорить о производительности, измеряемой в TFLOPS (1 TFLOPS соответствует 1012 операциям с плавающей запятой в секунду).

Вторая характерная черта шестого поколения — резко возросший уровень рабочих станций. В процессорах новых рабочих станций успешно совмещаются RISC-архитектура, конвейеризация и параллельная обработка. Некоторые рабочие станции по производительности сопоставимы с суперЭВМ четвертого поколения. Впечатляющие характеристики рабочих станций породили интерес к гетерогенным (неоднородным) вычислениям, когда программа, запущенная на одной рабочей станции, может найти в локальной сети не занятые в данный момент другие станции, после чего вычисления распараллеливаются и на эти простаивающие станции.

Наконец, третьей приметой шестого поколения в эволюции ВТ стал взрывной рост глобальных сетей. Завершая обсуждение эволюции ВТ, отметим, что верхняя граница шестого поколения хронологически пока не определена и дальнейшее развитие вычислительной техники может внести в его характеристику новые коррективы. Не исключено также, что последующие события дадут повод говорить и об очередном поколении.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.