Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Терморегуляция организма



Одним из необходимых условий нормальной жизнедеятельности человека является обеспечение нормальных метеорологических условий в помещениях, оказывающих большое влияние на тепловое самочувствие человека. Метеорологические условия, или микроклимат, зависят от теплофизических особенностей технологического процесса, местного климата, сезона года, условий отопления (в холодный период года) и вентиляции в помещениях.

Трудовая деятельность человека сопровождается непрерывным выделением теплоты в окружающую среду. Её количество зависит от степени физического напряжения в определённых климатических условиях и составляет от 85 Вт (в состоянии покоя) до 500 Вт (при тяжёлой работе). Для того, чтобы физиологические процессы в организме протекали нормально, выделяемая организмом теплота должна полностью отводиться в окружающую среду. Нарушение теплового баланса может привести к перегреву, либо к переохлаждению организма и, как следствие, к потере работоспособности, быстрой утомляемости, потере сознания, к несчастным случаям и профзаболеваниям.

Нормальное тепловое самочувствие имеет место, когда тепловыделения человека Qтч полностью воспринимаются окружающей средой Qтс, т.е. когда имеет место тепловом баланс Qтч = Qтс, то в этом случае температура внутренних органов остаётся постоянной 36, 5 ˚C.

Если теплопродукция организма не может быть полностью передана окружающей среде (Qтч>Qтс), происходит рост температуры внутренних органов и такое тепловое самочувствие характеризуется понятием жарко. Теплоизоляция человека (например, в тёплой и плотной одежде), находящегося в состоянии покоя (сидя или лёжа) от окружающей среды, приведёт к повышению его температуры уже через 1 час на 1,2˚C. А то же самое при выполнении работы средней тяжести, вызовет повышение температуры на 5 ˚C, т.е. приблизится к критической (+43˚C) температуре.

В случае, когда окружающая среда воспринимает больше теплоты, чем её вырабатывает человек (Qтч<Qтс), происходит охлаждение организма. Такое тепловое самочувствие характеризуется понятием холодно.

Терморегуляция организма - физиологический процесс поддержания температуры тела в границах от 36,6 до 37,2°С. Основной путь поддержания равновесия - теплоотдача.

Теплоотдача идёт следующими путями:

1. Излучение тепла (Q изл)телом человека по отношению к окружающим поверхностям, имеющим меньшую температуру. Это основной путь отдачи тепла в производственных условиях. Излучением отдают тепло все тела, имеющие температуру выше абсолютного нуля - 273°С. Человек отдаёт тепло, когда температура окружающих его предметов ниже температуры наружных слоёв одежды (27 - 28°С) или открытой кожи.

2. Проведение(Q п)- отдача тепла предметам, непосредственно соприкасающемся с телом человека.

3. Конвекция(Q к)- передача тепла через воздушную среду. Человек нагревает вокруг себя слой воздуха толщиной 4 - 8 мм путём проведения тепла. Нагрев более отдалённых слоёв идёт за счёт естественного и принудительного замещения прилегающих к телу более тёплых слоёв воздуха более холодными. При подвижном воздухе теплоотдача увеличивается в несколько раз.

4. Испарение воды с поверхности кожи и слизистой оболочки верхних дыхательных путей(Q ис.)- основной путь отдачи тепла при повышенной температуре воздуха, особенно, когда затрудняется или прекращается отдача излучением или конвекцией. В обычных условиях испарение идет в результате неощутимого потоотделения на большей части поверхности тела в результате диффузии воды без активного участия потовых желёз. В целом организм теряет 0,6 л воды в сутки. При выполнении физической работы в условиях повышенной температуры воздуха идёт повышенное потоотделение, при котором количество теряемой жидкости 10 - 12 л за смену. Если пот не успел испариться, он покрывает кожу влажным слоем, что не способствует отдаче тепла, и создаются условия для перегрева организма. В этом случае идёт потеря воды и солей. Это приводит к обезвоживанию организма, потере минеральных солей и водо-растворимых витаминов (С, В1, В2). Такие потери влаги приводят к сгущению крови, нарушению солевого обмена.

При тяжёлой работе в условиях повышенной температуры воздуха теряется 30 - 40 г соли NaCl (всего в организме 140 г NaCl). Дальнейшая потеря солей вызывает мышечные спазмы, судороги.

5. Тепловое (инфракрасное) излучение.В условиях производства может присутствовать тепловое (инфракрасное) излучение - невидимое электромагнитное излучение. Источник - любое нагретое тело.

В зависимости от длины волны оно делится на коротковолновое, средневолновое, длинноволновое. Проходя через воздух эти лучи его не нагревают, но, поглотившись твёрдым телом, лучистая энергия переходит в тепловую.

Особенности действия лучистого тепла зависят от длины волны инфракрасного излучения. Длинные волны (1,4 - 10 мкм) поглощаются слоем кожи, вызывая калящий эффект. Короткие волны проникают глубоко внутрь организма, нагревая внутренние органы, мозг, кровь. Длительное воздействие повышенной температуры в сочетании с большой влажностью может привести к перегреванию организма. При этом у человека возникает головная боль, тошнота, сердцебиение, общая слабость, рвота, потоотделение, частое дыхание, тахикардия. При работе на воздухе, в результате облучения головы инфракрасными лучами коротковолнового диапазона, происходит тяжелое поражение мозговой ткани вплоть до выраженного менингита и энцефалита. В тяжелых случаях наблюдаются судороги, бред, потеря сознания. При этом температура тела остается нормальной или повышается незначительно.

Нормальный теплообмен (т.е. тепловой комфорт) образуется тогда, когда

Q тч=Q к + Q т + Q изл + Q исп + Q в = Q тс

При значительном превышении теплопродукции организма человека (Qтч»Qтс) возникает перегрев (гипертермия), угрожающая жизни и здоровью человека; при значительном уменьшении теплопродукции организма по сравнению с поглотительными возможностями среды, возникает переохлаждение (гипотермия), опасное для здоровья и жизни человека.

В условиях теплового гомеостаза баланс тепла в организме гомойотермов описывается выражением:

ΔQ = M - E ± C ± R ± K ± W = 0

где ΔQ - изменения теплосодержания; М - продукция тепла, а остальные члены уравнения - отдача тепла организмом во внешнюю среду различными путями. В условиях температурного комфорта ΔQ = 0.

Здесь сразу же необходимо оговорить то существенное современное понимание гомеостаза, в соответствии с которым любой его вид, в том числе и тепловой гомеостаз, выражается не в жесткой фиксации тех или иных показателей на определенном уровне, а скорее в их колебании вокруг среднего значения. Это принципиальное соображение, по крайней мере для человека, подтверждается еще и фактически - феноменом крайней нестабильности теплового обмена тела человека.

О. Бартон и А. Эдхолм (1957) указывают, что даже при кратковременных исследованиях в специальных климатических камерах со строгим контролем метеорологических условий и состояния исследуемых термостабильное состояние не достигается на протяжении нескольких часов. Выражение 1 есть полное уравнение теплового баланса, но эволюционно - биологическое значение его составляющих далеко не одинаково. Так, продукция тепла в организме (М) генетически не обусловлена тепловым обменом, а является следствием коренных процессов, характеризующих жизнедеятельность. Живой организм характеризуется непрерывным обменом веществ и энергии, который происходит в соответствии с известным уравнением термодинамики:

ΔН = ΔZ + TΔS

где ΔН - изменение энтальпии - меры общего запаса химически превращаемой энергии; ΔZ - изменение термодинамического потенциала или свободной энергии - части энтальпии системы, которая может быть с пользой использована для совершения работы; ΔS - изменения энтропии (термодинамической) для данных условий - меры неопределенности системы, зависящей от действия межмолекулярных сил и теплового движения и измеряемой величиной рассеяния потенциальной энергии химических веществ в виде тепла; Т - °К (градусы Кельвина).

Источником теплопродукции (М), таким образом, служат процессы обмена веществ и энергии, непрерывно совершающиеся в организме. В ходе расщепления энергетических материалов энергия, кумулируемая в макроэргических соединениях, может рассеиваться в виде тепла ("первичная теплота"), либо превращаться в те или иные виды работы, в конечном счете также переходящие в тепловую энергию. Однако основное тепло организм получает в результате осуществления тех или иных видов работы (70% теплопродукции), в то время как теплорассеяние составляет лишь 30%.

 

Таблица 3. 1. Потребление кислорода различными органами взрослого человека массой 63 кг (Bord Р., 1961)

 

Потребление кислорода различными органами взрослого человека массой 63 кг (Bord Р., 1961)
Орган Масса, кг Артериовенозная разница по кислороду, см3/л Потребление кислорода
абсолютное, см3/мин относительное
см3/(мин·100 г) % от общего
Печень 2,6 2,0 20,4
Почки 0,3 6,0 7,2
Мозг 1,4 3,3 18,4
Кожа 3,6 0,3 4,8
Скелетные мышцы 31,0 0,2 20,0
Миокард 0,3 9,7 11,6
Другие части тела 23,8 0,2 17,6
Тело в целом 0,4 100,0

 

Для проблемы регуляции теплового обмена существенный интерес представляют источники продукции тепла в покое и при мышечной работе. Образование тепла неразрывно связано с энергетическим обменом. В условиях нормальной жизнедятельности в покое о величине теплопродукции можно судить по интенсивности окислительных процессов (потреблению кислорода). Соответствующие данные приведены в табл. 3.1

В покое наиболее высокий вклад в теплопродукцию (58,8%) обеспечивается печенью, мозгом и скелетными мышцами. При этом в первых двух органах высоки и относительные показатели энергетического обмена (артериовенозная разница по кислороду и его относительное потребление органом); в то же время интенсивность обмена в покоящихся мышцах невелика и валовое значение их теплопродукции определяется просто значительной массой мышечпой ткани.

Структура энергозатрат в тканях (Иванов К. П., 1972) показывает, что из 1600 ккал/сут (в условиях основного обмена) около 900 ккал улавливается в форме макроэргических связей АТФ, 215 ккал идет на поддержание неравновесных ионных концентраций по обе стороны клеточных мембран, 415 ккал обеспечивает процессы обновления белков, липидов и полисахаридов, и лишь 270 ккал затрачивается на сокращение сердечной мышцы и дыхательных мышц. Вместе с тем все эти процессы характеризуются низкими величинами КПД, например синтез белка имеет КПД 10-13%, транспорт ионов - 20%, синтез АТФ - 50% и т. д. Таким образом, происходит накопление "первичного" и "вторичного" тепла.

При совершении мышечной работы энергетический обмен в мышцах резко возрастает, о чем можно судить и по такому косвенному показателю, как величина минутного объема крови, протекающей через мышцы в покое и при их сокращении: в первом случае она равна 840 мл/мин, а во втором - 12 500 мл/мин, что указывает на повышение потребления кислорода мышцами по крайней мере в 5 раз. Таким образом, увеличение теплопродукции при мышечной работе обусловлено повышенным образованием тепла в первую очередь в ткани скелетных мышц. Однако следует учитывать еще и адекватное возрастание энергетических процессов (и теплопродукции) в органах, обеспечивающих мышечную работу - в головном и спинном мозге, сердце, дыхательных мышцах, в печени и других органах.

В условиях термического комфорта важнейшее значение в термогенезе имеют произвольные мышечные движения, потому что именно к ним, как гениально заметил И. М. Сеченов (1863), сводится "все бесконечное разнообразие внешних проявлений мозговой деятельности". Измерения энерготрат при "обыденных" двигательных актах человека показывают их различную (иногда и значительную) термогенетическую стоимость (Кандрор И. С., 1968).

В зависимости от поведения человека даже на протяжении нескольких часов сдвиги теплопродукции могут носить характер быстрых и значительных пиков.

Параметры микроклимата регламентируются с учётом тяжести физического труда и времени года.

Изменение параметров микроклимата вызывает изменение соотношения величин теплопродукции Q. Так, при нормальных условиях во время лёгкой физической работы доля Qк+ Qтсоставляет около 30 % всей теплоотдачи, Qизл около 45 %, Qисп=20 % и Qв=5 %.

Чем выше температура окружающих предметов, тем меньше теплоотдача излучением. При повышении температуры окружающего воздуха до температуры тела человека и выше, эффективность теплоотдачи теплопроводностью Qт, конвекциейQ ки излучением Qизл уменьшается и решающее значение приобретает отвод тепла путём испарения влаги (пота) с поверхности тела Qисп. Но интенсивность испарения влаги с поверхности тела человека зависит от относительной влажности Wи скорости движения окружающего воздухаV.

При Wболее 75 % процесс испарения влаги резко замедляется, а при W=100 % прекращается полностью. Вместе с этим замедляется, а затем и прекращается теплоотдача Qисп. При повышении влажности пот не испаряется, а стекает каплями с поверхности кожного покрова. Возникает так называемое «проливное» потоотделение, изнуряющее организм и не создаёт необходимую теплоотдачу. Происходит обезвоживание организма, которое влечёт за собой нарушение остроты зрения и умственной деятельности. Потеря влаги на 15-20% приводит к смертельному исходу.

Недостаточная влажность (<20%) также оказывает неблагоприятное воздействие на организм, вследствие интенсивного испарения влаги со слизистых оболочек, их пересыхания, растрескивания и кровотечения.

Увеличение скорости воздуха υ всегда приводит к увеличению теплоотдачи в окружающую среду.

При лёгкой работе разрешается более высокая температура и меньшая скорость движения воздуха.

В тёплый период года (при температуре вне помещения +10°С и выше) температура в производственном помещении должна быть не более +28°С при лёгкой работе и не более +26°С при тяжёлой работе. Если вне помещения температура более +25°С, то в помещении допускается повышение температуры до +33°С.

Согласно ДСН 3.3.6 042-99 «Санитарные нормы микроклимата производственных помещений», по степени влияния на тепловое состояние организма человека, микроклиматические условия подразделяются на оптимальные и допустимые. Для рабочей зоны производственных помещений устанавливаются оптимальные и допустимые микроклиматические условия с учетом тяжести выполняемой работы и периода года (табл.3.2).

Оптимальные микроклиматические условия - это такие условия микроклимата, которые при длительном и систематическом влиянии на человека обеспечивают сохранение теплового состояния организма без активной работы терморегуляции. Они сохраняют обеспечение самочувствие теплового комфорта и создание высокого уровня производительности труда (табл. 3.2.).

Допустимые микроклиматические условия, которые при длительном и систематическом влиянии на человека могут вызвать изменения теплового состояния организма, но нормализуются и сопровождаются напряженной работой механизмов терморегуляции в границах физиологической адаптации (табл. 3.2.). При этом не возникает нарушений или ухудшения состояния здоровья, но наблюдается дискомфортное тепловосприятие, ухудшение самочувствия и снижение работоспособности.

Условия микроклимата, выходящие за допустимые границы называются критическими и ведут, как правило, к серьезным нарушениям в состоянии организма человека.

Оптимальные условия микроклимата создаются для постоянных рабочих мест.

Таблица 3. 2

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.