Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Порядок выполнения работы. 1. Изучить методику и получить у преподавателя допуск к работе.



1. Изучить методику и получить у преподавателя допуск к работе.

2. Определить площадь сечения отверстия, через которое удаляется загрязненный воздух.

3. Измерить с помощью манометра скоростное давление воздушной струи. Для этого металлическая трубка, изогнутая под углом 90о, открытым концом устанавливается навстречу струе в середине воздуховода; второй конец с помощью шланга присоединяется к манометру. Схема лабораторной установки приведена на рис. 3.4.

 

 

Рис. 3.4. Схема лабораторной установки для определения эффективности работы вытяжного шкафа:

I – трубка полного давления; II – трубка статического давления

 

4. Произвести необходимые расчеты для вытяжных шкафов объемом 3 и 10 м3 при полном сечении воздуховода и при сечении, перекрытом заслонкой на ½ (рассчитать скорость воздушного потока в заданном сечении воздуховода, определить кратность воздухообмена в час, объем вытяжного шкафа, объем удаляемого воздуха).

5. Оформить полученные данные, записав результаты замеров и расчетов в таблицу (табл. 3.2).

 

Таблица 3.2

Расчетно-экспериментальные показатели эффективности работы
вытяжного шкафа

Сечение вентиляционного канала F, м2 Объем вытяжного шкафа V, м3 Скорость воздушного потока w, м/с Объем удаляемого воздуха L, м3 Кратность обмена воздуха в час К Группа вредных газов, с которыми допустимо работать
При полном сечении воздуховода
         
         
При сечении воздуховода, перекрытом наполовину
         
         

Содержание отчета

Отчет о лабораторной работе №

Исполнители:

1. Краткое описание цели и методики проведения работы.

2. Исходные и расчетные данные с расчетными формулами.

3. Заполненные таблицы.

4. Выводы по работе.

Контрольные вопросы

1. Что называется вентиляцией?

2. Назовите нормативно-технические документы, определяющие требования к работе вентиляционных систем.

3. Назовите виды вентиляции.

4. Перечислите существующие механические вентиляционные установки.

5. Каковы основные технические характеристики вентиляционных установок?

6. Как определяется эффективность работы вытяжного шкафа?

7. Что называют кратностью воздухообмена?

8. Какие показатели рассчитываются в ходе выполнения лабораторной работы?


 

Лабораторная работа №4

Исследование естественного освещения в производственных

Помещениях

 

Цель работы: ознакомление с нормированием и расчетом естественного освещения, измерительными приборами и методами определения качества естественного освещения на рабочих местах.

 

Основные понятия и определения

Одним из основных вопросов безопасности жизнедеятельности является организация рационального освещения производственных помещений и рабочих мест. Правильно спроектированное освещение сохраняет зрение работающего, снижает утомляемость, способствует повышению производительности и безопасности труда, качества выпускаемой продукции и снижению травматизма. Неправильно выбранные при проектировании осветительные приборы и аппаратура, а также нарушения правил их технической эксплуатации могут быть причиной пожара, взрыва, аварии на предприятии.

Степень усталости глаз зависит от напряженности процессов, сопровождающих зрительное восприятие предметов. К таким процессам относятся аккомодация, конвергенция и адаптация.

Аккомодация – это способность глаза приспосабливаться к ясному видению предметов, находящихся от него на различном расстоянии, посредством изменения кривизны хрусталика. Чрезмерная усталость мышц, управляющих зрачком, приводит к появлению близорукости или дальнозоркости.

Конвергенция – это способность глаз при рассмотрении близких предметов принимать положение, при котором зрительные лучи пересекаются на фокусируемом предмете. Расстояние, на котором можно четко видеть предмет без напряжения, равно 30–40 см.

Адаптация – это изменение чувствительности глаза в зависимости от воздействия на него раздражителей, например при изменении яркости, или освещенности. Процесс адаптации обусловлен изменением диаметра зрачка, поэтому частая переадаптация приводит к утомлению органов зрения.

Основными величинами, характеризующими свет, являются световой поток, сила света, освещенность и яркость. Они являются количественными характеристиками освещения.

Световой поток (Ф) – это мощность лучистой энергии, оцениваемой по световому ощущению человеческого глаза. За единицу светового потока принят 1 люмен (лм).

Сила света (J) – это отношение светового потока к телесному углу, внутри которого он равномерно распределен:

 

,

где Jα –сила света в направлении под углом a; –световой поток, заключенный внутри телесного угла (рис.4.1).

 

 

Рис. 4.1. К понятиям телесного угла (а) и яркости (б)

 

За единицу силы света принята кандела (кд). Одна кандела – это сила света, испускаемого с поверхности 1/600000 м2 полного излучателя (государственный световой эталон) в перпендикулярном направлении при температуре затвердевания платины 2 046,65 К и давлении 101325 Па.

Освещенность (Е) – это плотность светового потока на освещаемой поверхности:

.

За единицу освещенности принят люкс (лк), 1 лк равен 1 лм/м2.

Яркость (L) – это поверхностная плотность силы света в заданном углом направлении:

,

где Lα – сила света в заданном углом a направлении, кд/м2; dS – площадь проекции светящейся поверхности на плоскость, перпендикулярную направлению a, отсчитываемому от нормали к излучаемой поверхности;
a – угол между перпендикуляром к этому участку и направлением излучения.

К качественным характеристикам освещения относятся равномерность распределения светового потока, блесткость, контраст объекта с фоном и др. Различают прямую блесткость, возникающую от ярких источников света и светильников, попадающих в поле зрения работающих, и отраженную блесткость – от поверхностей с большим коэффициентом отражения. Блесткость в поле зрения вызывает раздражение органов зрения и снижает чувствительность глаза. Такое изменение нормальных зрительных функций называется слепимостью.

Фон – это поверхность, прилегающая непосредственно к объекту различения, на которой он рассматривается. Фон считается светлым при коэффициенте отражения поверхности (р) более 0,4, средним – при коэффициенте отражения поверхности от 0,2 до 0,4 и темным – при коэффициенте отражения поверхности менее 0,2.

Контраст объекта с фоном определяется как фотометрически измеряемая разность яркости двух зон. Различают малый, средний и большой контрасты объекта с фоном. Малый контраст (К < 0,2) – фон и объект мало различаются, средний контраст (0,2 < К < 0,5) – фон и объект заметно различаются, большой контраст (К > 0,5) – фон и объект резко различаются.

При нормировании естественного и искусственного освещения принимается во внимание характеристика зрительной работы, которая подразделяется на восемь разрядов (см. прил. 3). При проектировании искусственного освещения учитываются подразделы а, б, в, г, характеризующие контраст объекта с фоном.

Естественное освещение в помещении может осуществляться прямым солнечным светом, рассеянным светом неба, отраженным светом земли, прилегающей растительностью, зданиями и сооружениями. Все указанные виды освещения формируют средние уровни наружного естественного освещения, которые характеризуют световой климат данной местности. Он оценивается коэффициентом светового климата m, который уменьшается по мере перемещения поясов светового климата с севера (I пояс) на юг (V пояс) от 0,8 до 1,2.

За короткое время уровень естественного освещения рабочего места может сильно изменяться, поэтому он нормируется коэффициентом естественной освещенности (КЕО), показывающим, какую часть наружной освещенности ЕН, создаваемой светом полностью открытого небосвода на горизонтальной плоскости, составляет освещенность в данной точке внутри помещения ЕВ:

. (4.1)

Нормы освещенности производственных помещений при естественном освещении даны в прил. 2.

Нормированное значение КЕО для зданий, находящихся в I, II, IV и V поясах светового климата, определяется по формуле

 

,

где – нормированное значение КЕО для III пояса светового климата; т – коэффициент светового климата; с – коэффициент солнечности климата.

Значения и коэффициентов т и с определяются по СНиП 23-05-95.

Производственные помещения могут иметь следующие виды естественного освещения:

а) боковое освещение, которое осуществляется при помощи световых проемов в ограждающих конструкциях здания:

-одностороннеебоковое освещение, когда световые проемы располагаются на одной стороне ограждающих конструкций здания;

- двустороннее боковое освещение, когда световые проемы располагаются на двух сторонах ограждающих конструкций здания;

б) верхнее освещение, которое осуществляется при помощи верхних световых проемов в перекрытии, фонарей и через световые проемы в местах перепадов высот смежных зданий;

в) комбинированное освещение, которое представляет собой совокупность верхнего и бокового освещения.

Схемы распределения коэффициентов естественного освещения в зависимости от вида естественного освещения представлены на рис. 4.2.

 

Рис. 4.2. Схемы распределения коэффициентов естественной освещенности (КЕО) по размерам помещений:

а – при одностороннем боковом освещении; б –при двустороннем боковом освещении; в – при верхнем освещении; г – при комбинированном освещении; 1 –уровень рабочей плоскости; 2 – кривая, характеризующая изменения КЕО в плоскости разреза помещения; 3 – уровень среднего значения; М – точка, в которой нормируется минимальное значение КЕО

 

Существуют два метода определения коэффициента естественной освещенности – расчетный и экспериментальный.

Расчетный метод применяется на стадии проектирования производственных помещений и при выборе расстановки станков, оборудования и т.д. При боковом освещении КЕО определяется по формуле

 

, (4.2)

где εб –геометрический КЕО в расчетной точке, учитывающий прямой свет неба; q –коэффициент, учитывающий неравномерную яркость облачного неба; εзд – геометрический КЕО в расчетной точке, учитывающий свет, отраженный от противостоящих зданий; R –коэффициент, учитывающий относительную яркость противостоящего здания; r1 – коэффициент, учитывающий повышение КЕО благодаря свету, отраженному от поверхностей помещения и подстилающего слоя, прилегающего к зданию; τ0 –общий коэффициент светопропускания, определяемый по формуле

,

где τ1 – коэффициент светопропускания материала; τ2 – коэффициент, учитывающий потери света в переплетах светопроема; τ3 – коэффициент, учитывающий потери света в несущих конструкциях; τ4 –коэффициент, учитывающий потери света в солнцезащитных устройствах; τ5 – коэффициент, учитывающий потери света в защитной сетке; Кз – коэффициент запаса. Значения коэффициентов, входящих в формулу (4.2), принимают по СНиП 23-05-95.

При экспериментальном методе производятся измерения освещенности в расчетной точке внутри производственного помещения и одновременно наружной освещенности, горизонтальной поверхности, освещаемой всем небосводом. Результаты измерений подставляют в формулу (4.1) и определяют коэффициент естественной освещенности.

Для измерения освещенности применяют люксметры Ю-116, Ю-117, Ю-16. Принцип действиялюксметровоснован на явлении фотоэлектрического эффекта. При освещении фотоэлемента в замкнутой цепи, состоящей из фотоэлемента и измерителя, возникает ток, который отклоняет стрелку измерителя. Величина тока и, следовательно, отклонение стрелки измерителя пропорциональны освещенности рабочей поверхности фотоэлемента.

Люксметр Ю-116 предназначен для измерения освещенности, создаваемой естественным и искусственным светом, источники которого расположены произвольно относительно светоприемника люксметра. Переносной фотоэлектрический люксметр Ю-116 общепромышленного назначения применяется для контроля освещенности в промышленности, в сельском хозяйстве, на транспорте и других отраслях народного хозяйства, а также для исследований, проводимых в научных, конструкторских и проектных организациях. Люксметр предназначен для эксплуатации при температуре окружающего воздуха от -10 до +350С и относительной влажности до 80% при (20±5)°С.

 

Технические данные

 

1. Диапазон измерения и общий номинальный коэффициент ослабления применяемых двух насадок приведены в табл. 4.1.

Таблица 4.1

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.