Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Характеристики и классификация процессоров и микропроцессоров



Поскольку процессор является основным устройством ЭВМ и именно в нем выполняются все вычисления и обработка информации, то его основные характеристики определяют эффективность использования ЭВМ в целом. К важнейшим характеристикам процессора, определяющим его вычислительные свойства, относятся: разрядность; емкость адресуемой памяти; длина конвейера; назначение (универсальный или специализированный); число внутренних регистров и т.д..

Эти же характеристики определяют и вычислительные свойства микропроцессора (МП). Но для оценки области использования и особенностей разработки вычислительной техники на основе МП важными являются также характеристики микропроцессора как интегральной схемы. Основными из них являются: быстродействие; потребляемая мощность; масса и габаритные размеры, число источников питания; надежность; эксплуатационная стойкость; стоимость.

Классификация MП по наиболее существенным из перечисленных характеристик служит основой для выбора эффективной области применения того или иного типа МП.

По назначению МП подразделяют на универсальные и специализированные.

К универсальным относят МП, имеющие широкое применение в различных областях при выполнении самых разных задач. В персональных компьютерах используются именно универсальные МП.

Специализированные МП предназначены для конкретных применений, их характеристики наиболее соответствуют определенному кругу задач. Например, в ранних моделях компьютеров применялись в основном универсальные МП (модели фирмы Intel 8088, 80286, 80386), в которых не была предусмотрена специальная команда для обработки чисел с плавающей запятой. При необходимости работы с такими числами МП выполнял каждую операцию очень медленно – за несколько десятков тактов. Поэтому на материнской плате было предусмотрено место для установки дополнительного специализированного МП, так называемого математического сопроцессора (модели фирмы Intel 8087, 80287, 80387).

Наличие дополнительного специализированного МП позволило уменьшить время выполнения некоторых операций (например, извлечение корня или вычисление тригонометрических функций) в десятки и сотни раз. Однако для большого числа пользователей, которым подобные вычисления не требуются, вполне достаточно только основного МП.

По разрядности МП подразделяют на МП с фиксированной и изменяемой разрядностью слова (модульные). Постоянное совершенствование микроэлектронных технологий позволяет непрерывно увеличивать разрядность МП. В настоящее время могут быть использованы 8-, 16-, 32-, 64-разрядные МП.

Число внутренних регистров служит одним из показателей вычислительных возможностей МП. Этот показатель также непрерывно возрастает: 2 — в самых простых МП, 8 и 16 — в достаточно распространенных, 64 и более — в МП типа Pentium и других новых моделях. Число регистров МП фактически характеризует объем сверхоперативной памяти МП с малым временем обращения.

Современные МП, как уже отмечалось, имеют кэш-память (или кэш) 1-го и 2-го уровней. Кэш 1-го уровня — это память с минимальным временем обращения. Его объем невелик (например, 16 Кбайт), тогда как объем кэш 2-го уровня достигает нескольких мегабайт.

Быстродействие МП характеризуется тактовой частотой, которая в новейших моделях составляет тысячи мегагерц.

Производительность МП является его интегральной характеристикой, которая зависит от тактовой частоты работы процессора, его разрядности, а также от особенностей архитектуры (наличие кэш-памяти и др.).

Производительность МП нельзя вычислить, она определяется в процессе тестирования по скорости выполнения МП определенных операций в какой-либо программной среде.

По способу управления МП подразделяются на микро- и макропрограммируемые. Микропрограммное управление позволяет пользователю установить свой собственный набор команд, который будет наилучшим образом соответствовать решению конкретных задач.

Обычно в микропроцессорных секциях с наращиваемой разрядностью применяется именно такой способ управления. Макропрограммное управление использует набор неизменных команд, определяемых схемой МП, поэтому такое управление называют также жестким аппаратным.

Число необходимых источников питания определяет сложность монтажа вычислительного устройства с МП и влияет на габаритные размеры, надежность и стоимость этого устройства. Обычно требуются два-три источника питания, но при некоторых технологиях изготовления удается обойтись одним.

 

Билет № 9 вопрос 1

Микропроцессор характеризуется:
1) тактовой частотой, определяющей максимальное время выполнения переключения элементов в ЭВМ;
2) разрядностью, т.е. максимальным числом одновременно обрабатываемых двоичных разрядов.

Разрядностть МП обозначается m/n/k/ и включает:
m - разрядность внутренних регистров, определяет принадлежность к тому или иному классу процессоров;
n - разрядность шины данных, определяет скорость передачи информации;
k - разрядность шины адреса, определяет размер адресного пространства. Например, МП i8088 характеризуется значениями m/n/k=16/8/20;
3) архитектурой. Понятие архитектуры микропроцессора включает в себя систему команд и способы адресации, возможность совмещения выполнения команд во времени, наличие дополнительных устройств в составе микропроцессора, принципы и режимы его работы. Выделяют понятия микроархитектуры и макроархитектуры.

Микроархитектура микропроцессора - это аппаратная организация и логическая структура микропроцессора, регистры, управляющие схемы, арифметико-логические устройства, запоминающие устройства и связывающие их информационные магистрали.

Макроархитектура - это система команд, типы обрабатываемых данных, режимы адресации и принципы работы микропроцессора.

В общем случае под архитектурой ЭВМ понимается абстрактное представление машины в терминах основных функциональных модулей, языка ЭВМ, структуры данных.

Вопрос 2

Та́ктовая частота́ — частота синхронизирующих импульсов синхронной электронной схемы, то есть количество синхронизирующих тактов, поступающих извне на вход схемы за одну секунду. Обычно термин употребляется применительно к компонентам компьютерных систем. В самом первом приближении тактовая частота характеризует производительность подсистемы (процессора, памяти и пр.), то есть количество выполняемых операций в секунду. Однако системы с одной и той же тактовой частотой могут иметь различную производительность, так как на выполнение одной операции разным системам может требоваться различное количество тактов (обычно от долей такта до десятков тактов), а кроме того, системы, использующие конвейерную и параллельную обработку, могут на одних и тех же тактах выполнять одновременно несколько операций.

Билет № 10

Вопрос 1 ( в тетради)

Вопрос 2

Сопроцессор — специализированный процессор, расширяющий возможности центрального процессора компьютерной системы, но оформленный как отдельный функциональный модуль. Физически сопроцессор может быть отдельной микросхемой или может быть встроен в центральный процессор (как это делается в случае математического сопроцессора в процессорах для ПК начиная с Intel 486DX).

 

Математический сопроцессор 80x287 в колодке на материнской плате персонального компьютера.

Различают следующие виды сопроцессоров:

§ математические сопроцессоры общего назначения, обычно ускоряющие вычисления с плавающей запятой,

§ сопроцессоры ввода-вывода (например — Intel 8089), разгружающие центральный процессор от контроля за операциями ввода-вывода или расширяющие стандартное адресное пространство процессора,

§ сопроцессоры для выполнения каких-либо узкоспециализированных вычислений.

Сопроцессоры могут входить в набор логики, разработанный одной конкретной фирмой (например Intel выпускала в комплекте с процессором 8086 сопроцессоры 8087 и 8089) или выпускаться сторонним производителем (например, Weitek (англ.) 1064 для Motorola m68k и 1067 для Intel 80286).

[править]Сопроцессор в программировании

Сопроцессор расширяет систему инструкций центрального процессора, поэтому для его использования, программа (компилируемая без интерпретации и вызова внешних библиотек) должна содержать эти инструкции. Настройки современных компиляторов для языков высокого уровня под процессоры семейства x86 зачастую позволяют выбирать: использовать математический сопроцессор или нет, что особенно важно при создании кода, который будет исполняться внутри обработчика аппаратного прерывания.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.