В целях анализа и получения статистических выводов по результатом сводки и группировки исчисляют обобщающие показатели – средние и относительные величины.
Задача средних величин – охарактеризовать все единицы статистической совокупности одним значением признака.
Средними величинами характеризуются качественные показатели предпринимательской деятельности: издержки обращения, прибыль, рентабельность и др.
Средняя величина – это обобщающая характеристика единиц совокупности по какому–либо варьирующему признаку.
Средние величины позволяют сравнивать уровни одного и того же признака в различных совокупностях и находить причины этих расхождений.
В анализе изучаемых явлений роль средних величин огромна. Английский экономист В. Петти (1623—1687 гг.) широко использовал средние величины. В. Петти хотел использовать средние величины в качестве меры стоимости расходов на среднее дневное пропитание одного работника. Устойчивость средней величины – это отражение закономерности изучаемых процессов. Он считал что информацию можно преобразовать, даже если нет достаточного объема исходных данных.
Применял средние и относительные величины английский ученый Г. Кинг (1648—1712) при анализе данных о населении Англии.
Теоретические разработки бельгийского статистика А. Кетле (1796—1874 гг.) основаны на противоречивости природы социальных явлений – высокоустойчивых в массе, но сугубо индивидуальных.
Согласно А. Кетле постоянные причины действуют одинаково на каждое изучаемое явление и делают эти явления похожими друг на друга, создают общие для всех них закономерности.
Следствием учения А. Кетле явилось выделение средних величин в качестве основного приема статистического анализа. Он говорил, что статистические средние величины представляют собой не категорию объективной действительности.
А. Кетле выразил взгляды на среднюю величину в своей теории среднего человека. Средний человек – это человек, обладающий всеми качествами в среднем размере (средняя смертность или рождаемость, средний рост и вес, средняя быстрота бега, средняя наклонность к браку и самоубийству, к добрым делам и т. д.). Для А. Кетле средний человек – это идеал человека. Несостоятельность теории среднего человека А. Кетле была доказана в русской статистической литературе в конце XIX—XX вв.
Известный русский статистик Ю. Э. Янсон (1835—1893 гг.) писал, что А. Кетле предполагает существование в природе типа среднего человека как чего–то данного, от которого жизнь отклонила средних людей данного общества и данного времени, а это приводит его к совершенно механическому взгляду и на законы движения социальной жизни: движение – это постепенное возрастание средних свойств человека, постепенное восстановление типа; следовательно, такое нивелирование всех проявлений жизни социального тела, за которым всякое поступательное движение прекращается.
Сущность данной теории нашла свое дальнейшее развитие в работах ряда теоретиков статистики как теория истинных величин. У А. Кетле были последователи – немецкий экономист и статистик В. Лексис (1837—1914 гг.), перенесший теорию истинных величин на экономические явления общественной жизни. Его теория известна под названием теория устойчивости. Другая разновидность идеалистической теории средних величин основана на философии
Ее основатель – английский статистик А. Боули (1869– 1957гг.) – один из самых видных теоретиков новейшего времени в области теории средних величин. Его концепция средних величин изложена в книге «Элементы статистики».
А. Боули рассматривает средние величины лишь с количественной стороны, тем самым отрывает количество от качества. Определяя значение средних величин (или «их функцию»), А. Боули выдвигает махистский принцип мышления. А. Боули писал, что функция средних величин должна выражать сложную группу
с помощью немногих простых чисел. Статистические данные должны быть упрощены, сгруппированы и приведены к средним Эти взгляды: разделяли Р. Фишер (1890—1968 гг.), Дж. Юл (1871 – 1951 гг.), Фредерик С. Миллс (1892 г) и др.
В 30—е гг. XX в. и последующие годы средняя величина рассматривается как социально значимая характеристика, информативность которой зависит от однородности данных.
Виднейшие представители итальянской школы Р. Бенини (1862—1956 гг.) и К. Джини (1884—1965 гг.), считая статистику отраслью логики, расширили область применения статистической индукции, но познавательные принципы логики и статистики они связывали с природой изучаемых явлений, следуя традициям социологической трактовки статистики.
В работах К. Маркса и В. И. Ленина средним величинам отводится особая роль.
К. Маркс утверждал, что в средней величине погашаются индивидуальные отклонения от общего уровня и средний уровень становится обобщающей характеристикой массового явления Такой характеристикой массового явления средняя величина становится лишь при условии, если взято значительное число единиц и эти единицы качественно однородны. Маркс писал, чтобы находимая средняя величина была средней «…многих различных индивидуальных величин одного и того же вида».
Средняя величина приобретает особую значимость в условиях рыночной экономики. Она помогает определить необходимое и общее, тенденцию закономерности экономического развития непосредственно через единичное и случайное.
Средние величины являются обобщающими показателями, в которых находят выражение действие общих условий, закономерность изучаемого явления.
Статистические средние величины рассчитываются на основе массовых данных статистически правильно организованного массового наблюдения. Если статистическая средняя рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений), то она будет объективной.
Средняя величина абстрактна, так как характеризует значение абстрактной единицы.
От разнообразия признака у отдельных объектов абстрагируется средняя. Абстракция – ступень научного исследования. В средней величине осуществляется диалектическое единство отдельного и общего.
Средние величины должны применяться исходя из диалектического понимания категорий индивидуального и общего, единичного и массового.
Средняя отображает что–то общее, которое складывается в определенном единичном объекте.
Для выявления закономерностей в массовых общественных процессах средняя величина имеет большое значение.
Отклонение индивидуального от общего – проявление процесса развития.
В средней величине отражается характерный, типичный, реальный уровень изучаемых явлений. Задачей средних величин является характеристика этих уровней и их изменений во времени и пространстве.
Средний показатель – это обычное значение, потому что формируется в нормальных, естественных, общих условиях существования конкретного массового явления, рассматриваемого в целом.
Объективное свойство статистического процесса или явления отражает средняя величина.
Индивидуальные значения исследуемого статистического признака у каждой единицы совокупности различны. Средняя величина индивидуальных значений одного вида – продукт необходимости, который является результатом совокупного действия всех единиц совокупности, проявляющийся в массе повторяющихся случайностей.
Одни индивидуальные явления имеют признаки, которые существуют во всех явлениях, но в разных количествах – это рост или возраст человека. Другие признаки индивидуального явления, качественно различные в различных явлениях, т. е. имеются у одних и не наблюдаются у других (мужчина не станет женщиной). Средняя величина вычисляется для признаков качественно однородных и различных только количественно, которые присущи всем явлениям в данной совокупности.
Средняя величина является отражением значений изучаемого признака и измеряется в той же размерности, что и этот признак.
Теория диалектического материализма учит, что все в мире меняется, развивается. А также изменяются признаки, которые характеризуются средними величинами, а соответственно – и сами средние.
В жизни происходит непрерывный процесс создания чего–то нового. Носителем нового качества являются единичные объекты, далее количество этих объектов возрастает, и новое становится массовым, типичным.
Средняя величина характеризует изучаемую совокупность только по одному признаку. Для полного и всестороннего представления изучаемой совокупности по ряду определенных признаков необходимо располагать системой средних величин, которые могут описать явление с разных сторон.
Виды средних величин
В статистической обработке материала возникают различные задачи, которые необходимо решать, и поэтому в статистической практике используются различные средние величины. Математическая статистика использует различные средние, такие как: средняя арифметическая; средняя геометрическая; средняя гармоническая; средняя квадратическая.
Для того чтобы применить одну из вышеперечисленных видов средней, необходимо проанализировать изучаемую совокупность, определить материальное содержание изучаемого явления, все это делается на основе выводов, полученных из принципа осмысленности результатов при взвешивании или суммировании.
В изучении средних величин применяются следующие показатели и обозначения.
Признак, по которому находится средняя, называется осредняемым признаком и обозначается х; величина осредняемого признака у любой единицы статистической совокупности называют индивидуальным его значением, или вариантами, и обозначают как x 1, х 2, x 3,… х п; частота – это повторяемость индивидуальных значений признака, обозначается буквой f.
Средняя арифметическая
Один из наиболее распространенных видов средней – средняя арифметическая, которая исчисляется тогда, когда объем ос–редняемого признака образуется как сумма его значений у отдельных единиц изучаемой статистической совокупности.
Для вычисления средней арифметической величины сумму всех уровней признака делят на их число.
Если некоторые варианты встречаются несколько раз, то сумму уровней признака можно получить умножением каждого уровня на соответствующее число единиц совокупности с последующим сложением полученных произведений, исчисленная таким образом средняя арифметическая называется средней арифметической взвешенной.
Формула средней арифметической взвешенной выглядит следующим образом:
гдехi– варианты,
fi– частоты или веса.
Взвешенная средняя величина должна употребляться во всех случаях, когда варианты имеют различную численность.
Арифметическая средняя как бы распределяет поровну между отдельными объектами общую величину признака, в действительности варьирующуюся у каждого из них.
Вычисление средних величин производят по данным, сгруппированным в виде интервальных рядов распределения, когда варианты признака, из которых исчисляется средняя, представлены в виде интервалов (от – до).
Свойства средней арифметической:
1) средняя арифметическая суммы варьирующих величин равна сумме средних арифметических величин: Если хi= yi+zi, то
Данное свойство показывает в каких случаях можно суммировать средние величины.
2) алгебраическая сумма отклонений индивидуальных значений варьирующего признака от средней равна нулю, так как сумма отклонений в одну сторону погашается суммой отклонений в другую сторону:
Это правило демонстрирует, что средняя является равнодействующей.
3) если все варианты ряда увеличить или уменьшить на одно и тоже число α, то средняя увеличится или уменьшится на это же число α:
4) если все варианты ряда увеличить или уменьшить в А раз, то средняя также увеличится или уменьшится в А раз:
5) пятое свойство средней показывает нам, что она не зависит от размеров весов, но зависит от соотношения между ними. В качестве весов могут быть взяты не только относительные, но и абсолютные величины.
Если все частоты ряда разделить или умножить на одно и тоже число d, то средняя не изменится.
Средняя гармоническая. Для того чтобы определить среднюю арифметическую, необходимо иметь ряд вариантов и частот, т. е. значения х и f.
Допустим, известны индивидуальные значения признака х и произведения х/, а частоты f неизвестны, тогда, чтобы рассчитать среднюю, обозначим произведение = х/; откуда:
Далее преобразуем формулу средней арифметической так, чтобы по существующим данным хи m исчислить среднюю. Выразив в формуле средней арифметической / через х и m, получим:
Средняя в этой форме называется средней гармонической взвешенной и обозначается х гарм. взв.
Соответственно, средняя гармоническая тождественна средней арифметической. Она применима, когда неизвестны действительные веса f, а известно произведение fх = z
Когда произведения fх одинаковы или равны единицы (m = 1) применяется средняя гармоническая простая, вычисляемая по формуле:
где х – отдельные варианты;
n – число.
Средняя геометрическая
Если имеется n коэффициентов роста, то формула среднего коэффициента:
Это формула средней геометрической.
Средняя геометрическая равна корню степени n из произведения коэффициентов роста, характеризующих отношение величины каждого последующего периода к величине предыдущего.
Если осреднению подлежат величины, выраженные в виде квадратных функций, применяется средняя квадратическая. Например, с помощью средней квадратической можно определить диаметры труб, колес и т. д.
Средняя квадратическая простая определяется путем извлечения квадратного корня из частного от деления суммы квадратов отдельных значений признака на их число.
Средняя квадратическая взвешенная равна:
Структурные средние величины. Мода и медиана
Для характеристики структуры статистической совокупности применяются показатели, которые называют структурными средними. К ним относятся мода и медиана.
Мода (Мо) – чаще всего встречающийся вариант. Модой называется значение признака, которое соответствует максимальной точке теоретической кривой распределений.
Мода представляет наиболее часто встречающееся или типичное значение.
Мода применяется в коммерческой практике для изучения покупательского спроса и регистрации цен.
В дискретном ряду мода – это варианта с наибольшей частотой. В интервальном вариационном ряду модой считают центральный вариант интервала, который имеет наибольшую частоту (частность).
В пределах интервала надо найти то значение признака, которое является модой.
Мода зависит от величины групп, от точного положения границ групп.
Мода – число, которое в действительности встречается чаще всего (является величиной определенной), в практике имеет самое широкое применение (наиболее часто встречающийся тип покупателя).
Медиана (Me – это величина, которая делит численность упорядоченного вариационного ряда на две равные части: одна часть имеет значения варьирующего признака меньшие, чем средний вариант, а другая – большие.
Медиана – это элемент, который больше или равен и одновременно меньше или равен половине остальных элементов ряда распределения.
Свойство медианы заключается в том, что сумма абсолютных отклонений значений признака от медианы меньше, чем от любой другой величины.
Применение медианы позволяет получить более точные результаты, чем при использовании других форм средних.
Порядок нахождения медианы в интервальном вариационном ряду следующий: располагаем индивидуальные значения признака по ранжиру; определяем для данного ранжированного ряда накопленные частоты; по данным о накопленных частотах находим медианный интервал:
Медиана делит численность ряда пополам, следовательно, она там, где накопленная частота составляет половину или больше половины всей суммы частот, а предыдущая (накопленная) частота меньше половины численности совокупности.
;
матрицей , где S - площадь матрицы.
Гистограмма показывает как изменяется объем признака. Для оценки изменений площади соседних прямоугольников суммируются (возможно нарастающим итогом) и эта сумма относится к общему объему признака (сумме площадей всех прямоугольников).
Правильно построенная гистограмма (в пределах установленных масштабов) позволяет выделить генеральную совокупность по объему признака прямым или обратным порядком. Прямой порядок выделения генеральной совокупности сопряжен с нарастающей динамикой объема признака (S1 + S2 + S3 + S4), обратный (S4 + S3 + + S2 + S1) - с убывающей.
Построить гистограмму можно только для интервального ряда распределения, и в этом состоит специфичность гистограммы.
Более универсальным является второй вид уровневого графика - полигон распределения. В дискретных рядах каждому определенному значению признака соответствует своя частота (частость), что отражается на оси абсцисс точками, а не интервалами, а по оси ординат - целыми значениями частоты или дробными частости. В этом случае полигон распределения будет представлен ломаной линией.
Для интервального ряда получение полигона распределения предполагает соединение середин верхней линии гистограммы.
Для смешанного ряда построение полигона распределения предполагает соединение середин верхних линий гистограмм с высотой дискретного значения признака.
Если есть возможность закодировать цифрами стандартную номенклатуру по атрибутивному признаку, то эти цифры могут быть зарегистрированы на оси абсцисс, и это позволит построить полигон распределения (так называемый кодовый полигон распределения).
Универсальность этих графиков снижает их потенциальные возможности по сравнению с гистограммами. Полигон также характеризует распределение признака, но не так конкретно, как гистограмма (затруднен процесс расчета всех площадей). Изменение объема признака регистрируется в целом и нарастающим итогом, поэтому полигон распределения не позволяет выделить генеральную совокупность.
Тем не менее, полигон распределения регистрирует точку или момент перехода количества в качество в процессе нарастания объема признака.