Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Геотермальные электростанции



По современным представлениям глубинные слои Земли сильно разогреты. Известно, что в среднем на каждые 30-40 м в глубь Земли, температура возрастает на 10С. Повышение температуры объясняется существованием теплового потока, направленного от земного ядра. Мощность этого потока в тысячи раз меньше мощности солнечной радиации, но в некоторых регионах планеты концентрированный тепловой поток с термальными водами и паром выходит практически на поверхность Земли и уже активно используются как источник энергии. В Новой Зеландии ГеоТЭС вырабатывают до 40% всей электроэнергии, в Италии – 6%. Небольшая северная страна Исландия полностью обеспечивает себя овощами, фруктами и даже бананами. Теплицы здесь получают энергию от тепла горячих источников – гейзеров. Столица страны г. Рейкьявик, где проживает половина населения страны, отапливается только за счёт подземных источников.

Но не только для отопления используется тепло Земли. Еще в 1904 г. в небольшом итальянском городке Лардерелла была пущена первая маломощная геотермальная электростанция, которая много раз совершенствовалась и сегодня достигла мощности 360 МВт. В США недалеко от Сан-Франциско работает геоТЭС мощностью 500 МВт.

В России ГеоТЕС географически “привязаны” к районам парогидротермальных месторождений (Камчатка, Курилы). В этих районах ГеоТЭС могут почти полностью удовлетворить потребности в электроэнергии и уже сейчас имеют коммерческую привлекательность с учетом высокой стоимости привозного топлива. Перспективы ГеоТЭС для указанных районов уже определились. В дополнение к Верхне-Мутновской ГеоТЭС мощностью 12 МВт в ближайшие годы будут строиться Мутновская ГеоТЭС мощностью 50 МВт (первая очередь). В планах строительство Океанской ГеоТЭС в Сахалинской области мощностью 12 МВт. С учетом существующей Паужетской ГеоТЭС мощностью 11 МВт суммарная мощность всех ГеоТЭС региона может составить 85 МВт.

Гораздо большее распространение в электроэнергетике России могут получить ГеоТЭС на термальной воде с температурой 100-200оС, месторождения которой значительно более распространены. Такая ГеоТЭС должна быть двухконтурной, с низкокипящим рабочим телом во втором контуре. Структурная схема геотермальной ЭС показана на рисунке 6.1.

 

Рисунок 6.1 Схема ГеоТЭС для вулканических районов:

1 – скважина; 2 – парогенератор; 3 – турбина; 4 – конденсатор; 5 – насос;

6 – водяной теплообменник.

Однако эти ГеоТЭС, в отличие от парогидротермальных, требуют опытно-промышленного освоения для отработки технологии и достижения коммерческой привлекательности.

 

Ветровая энергия

Часть солнечной радиации, поступающей на Землю, неравномерно нагревает нижние слои атмосферы, перемещает большие воздушные массы и превращается в энергию ветра.

Запасы ветровой энергии многократно превышают запасы гидроэнергии на планете, но трудности использования ее заключаются в очень высокой рассеянности энергии ветра и в непостоянстве его.

Энергия ветра издавна была на службе человека. Техника 20 века открыла совершенно новые возможности для ветроэнергетики – получения электроэнергии. В начале века Н.Е. Жуковский разработал теорию ветродвигателя, на основе которой создаются высокопроизводительные установки, способные получать энергию даже при слабом ветре. В 1941 г. в США была пущена ветроэнергетическая установка мощностью 1250 кВт с размахом лопастей в 50 м.

Сегодня в мире производится огромное число ветроустановок с разным типом ветроколёс с горизонтальным и вертикальным расположением их, мощностью от нескольких кВт до 5 МВт, с диаметром колеса до нескольких десятков метров. Признанным поставщиком ветроустановок является Дания. Примечательно, что в один из летних дней 2015 года здесь выработка установками на НИЭ превысила потребление. В Европе наиболее активно ветроэлектростанции (ВЭС) вводятся в Германии, где установленная мощность их превышает 8000 МВт.

В России практическое развитие ветроэнергетики находится на начальном этапе. Разработано несколько типов ветроэлектроустановок (ВЭУ). Построены и находятся в опытно-промышленной эксплуатации до 10 ВЭУ мощностью 250 кВт и одна - мощностью 1 МВт. Последняя смонтирована в 1994 г., однако из-за недостатка средств до сих пор не сдана в эксплуатацию. В стадии проектирования находится несколько ветроэлектростанций (ВЭС). В Калмыкии, например, монтируются ветроагрегаты типа Радуга-1, которые имеют мощность 1000 кВт при расчётном скоростном напоре ветра 13,6 м/с.

Ветроустановки 30-100 кВт пригодны для автономного электроснабжения небольших поселков, а в сочетании с дизельными установками могут наиболее рационально решить проблему энергоснабжения поселений Крайнего Севера.

Однако, незавершенность стадии опытно-промышленных испытаний созданных ВЭУ, отсутствие достаточного опыта эксплуатации многоагрегатных ВЭС затрудняют ответ на вопрос, могут ли разработанные ВЭУ являться серийными образцами или требуется их существенная доработка. От этого в значительной степени будут зависеть перспективы и масштабы применения ВЭС.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.