Как мы уже отмечали, для различных уровней измерений подходят различные способы исчислений средней тенденции и дисперсии. Поскольку “тип занятий” – номинальная переменная, давайте начнем изучение этих [c.396]исчислений с рассмотрения статистических процедур, подходящих для номинального уровня измерения. На этом уровне, где цифры просто обозначают категории безотносительно к порядкуих расположения, единственно возможный способ измерения средней тенденции – это исчисление моды. Мода – это просто наиболее часто встречающееся значение признака, т.е. то значение, которое наиболее часто может встречаться в серии зарегистрированных наблюдений. В нашем случае это первая категория, или градация “синие воротнички”. Можно назвать их как модой, так и модальной категорией. (Распределенное, в котором две категории имеются с наибольшим количеством случаев, называется распределением с двумя модами, или бимодальным, возможно также распределение с большим количеством таких категорий.) Таким образом, занятие уровня “синих воротничков” являются наиболее типичными в нашем примере из 100 человек.
Однако ясно, что большинство людей в этом примере (фактически ровно75%) не являются рабочими – “синими воротничками”, т.е., даже если мы выделим наиболее типичное значение в данном распределении, информация эта не обязательно полностью верно отражает картину.[c.397]Более точно об этом можно судить, если подсчитать точное значение дисперсии для номинального уровня измерений, или коэффициент вариации, формула которого выглядит следующим образом:
или
,
где Σfнемодальное– сумма всех случаев, не входящих в модальную категорию; fмодальное – количество случаев в модальной категории; N – общее число случаев.
По сути дела, этот коэффициент дает нам процентную долю всех признаков, которые не входят в модальную категорию. В нашем примере
,
или, по упрощенной формуле
Значение коэффициента вариации колеблется между 0 (когда все случаи принимают одно и то же значение) и 1–1/N (когда каждый случай имеет свое значение). В общем, чем меньше коэффициент вариации, тем типичнее, или значимее (верно отражает картину), мода. В случае бимодального или многомодального распределения произвольно выбирается одно модальное значение в зависимости от целей подсчетов, и v определяется так, как указано выше.[c.398]