Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

ПОСТРОЕНИЕ ШКАЛЫ: ДВЕ ОСНОВНЫЕ ПРОБЛЕМЫ



Из вышеизложенного шкалирование может показаться достаточно простой, прямолинейной процедурой, когда в задачу исследователя входит просто идентифицировать ряд компонентов основного понятия, установить, каким показателем можно измерить каждый из них, затем объединить эти показатели в суммарную оценку с помощью произнесения нескольких волшебных слов или статистических заклинаний, и – раз-два! – дело сделано. К сожалению, эта видимая простота обманчива, потому что при отборе и интерпретации [c.251] компонентов шкалы нам может встретиться целый ряд подводных камней, требующих особой внимательности. С наиболее существенными из них мы уже знакомы – это проблемы, связанные с понятиями валидности (обоснованности) и надежности.

Валидность, как вы помните, – это свойство, определяемое ответом на вопрос: “Действительно ли мы измеряем именно то, что хотим измерить?” В теперешнем нашем контексте этот вопрос может быть несколько трансформирован следующим образом: “Есть ли основания полагать, что каждый из отдельных компонентов шкалы (каждый из конкретных вопросов) действительно напрямую связан с основным понятием и что все компоненты в совокупности полностью охватывают это понятие?” Иначе говоря, мы должны задаться вопросом: “А есть ли реальный смысл в том, чтобы объединять между собой ряд частных показателей, и – коли уж мы это сделали – есть ли смысл навешивать на этот ряд показателей избранный нами ярлык основного понятия?” Так, обращаясь снова к примеру со студентами, мы должны спросить себя, во-первых, действительно ли мнение человека о поведении студентов непосредственно связано с его мнением о студенческом стиле одежды или о манерах студентов, и во-вторых, действительно ли все эти мнения в совокупности отражают степень предубежденности данного лица против студентов.

Что касается надежности, то она определяется ответом на вопрос: “Вне зависимости от того, что конкретно мы измеряем, последовательно ли мы это делаем?” Применительно к шкалированию этот вопрос трансформируется в заботу о том, чтобы различные показатели, являющиеся компонентами шкалы, были связаны друг с другом последовательным и осмысленным образом. На деле нас интересует здесь не то, позволяет ли данный набор вопросов или показателей отличить яблоки от апельсинов, а скорее то, позволяет ли этот набор последовательно сортировать уже идентифицированные нами яблоки по размеру, цвету и т. п. в соответствии с некоторым стандартом. Если да, то объединение различных мер будет говорить о яблоках больше, чем любая отдельная мера. Но если наши стандарты (цвета, размера и т. п.) непоследовательны или [c.252] двусмысленны, то основанные на них наблюдения могут оказаться ложными.

Возможно, другой пример поможет сделать эти положения более понятными. Рассмотрим некую шкалу, предназначенную для того, чтобы каждый респондент выразил свое согласие или несогласие со следующими утверждениями:

1. Кубинцы дурны, и им нельзя верить
2. Французы дурны, и им нельзя верить
3. Японцы дурны, и им нельзя верить
4. Китайцы дурны, и им нельзя верить.

Давайте представим, что перед нами шкала для измерения ксенофобии, то есть страха и недоверия к иностранцам. Предположительно, чем с большим количеством утверждений согласится респондент, тем выше уровень ксенофобии, который мы можем ему приписать. Но будет ли дело обстоять именно так? Человек, полагающий, что только кубинцы дурныи им нельзя верить, утверждает это более в силу антикоммунизма, чем ксенофобии. В свою очередь человек, полагающий, что только японцы и китайцы дурны и им нельзя верить, утверждает это более в силу расизма, чем ксенофобии. И даже респондент, считающий, что все четыре группы дурны и им нельзя верить, как выясняется при ближайшем рассмотрении, страдает не ксенофобией, а скорее чувством, что все люди, или все правительства (даже той страны, где он живет) дурныи им нельзя верить. И следовательно, поскольку мы не можем с уверенностью утверждать, что эта шкала измеряет ксенофобию по существу, то эта шкала несостоятельна. И можем ли мы вообще доверять ей? Составлена ли она продуманно даже для измерения уровня ксенофобии? Страх и недоверие к китайцам, например, возможно, являются индикатором по меньшей мере двух совершенно различных особенностей, одна из которых идеологическая, вторая же имеет своей причиной расизм, и два респондента могут дать одинаковый ответ по совершенно разным причинам. И будет ли одинаковым чувство ксенофобии у антикоммуниста и расиста? Скорее всего – нет. Таким образом, механическое соединение этих конкретных пунктов с целью их соизмерения в лучшем случае будет [c.253] лишь тщетным упражнением, а в худшем – станет источником ошибочных умозаключений.

Проблемы подобного рода преодолеть не всегда просто, и ввиду этого при шкалировании нужно действовать очень внимательно, заранее все просчитывая. Тем не менее возможность представления сложного отношения или поведения в виде отдельного числа или оценки, являющаяся неоспоримым преимуществом шкалирования, служит стимулом к использованию этой методики во множестве самых разнообразных случаев. В этой главе мы обсудим четыре различных подхода к построению значимых (meaningful) шкал. При этом будут рассмотрены достоинства и недостатки каждого из них в том, что касается решения проблем валидности и надежности, а также присущие каждому из этих подходов процедуры. [c.254]

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.