Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Где распад пуринов, то там гипоксантин образуется из аденина (под действием адениндезаминазы)

5. Строение ДНК и РНК. Химические связи, участвующие в формировании их структуры. Функции нуклеиновых кислот. Виды переноса генетической информации. Биологическая роль комплементарности азотистых оснований.

ДНК и РНК – полимеры, мономерами которых являются мононуклеотиды. (ДНК в качестве пентозы имеет дезоксирибозу, а РНК – рибозу). ДНК имеет первичную (цепь дезоксирибонуклеозидмонофосфатов соединённых 3’ 5’ фосфодиэфирной связью), вторичную (две таких цепочки соединённых с помощью водородных связей между азотистыми основаниями. Между А и Т две связи, Г и Ц – три), третичную (ДНК упакованная в виде хромосомы) структуру.

РНК. Первичная – рибонуклеозидмонофосфаты в одну цепочку с 3 5 фосфодиэфирными связями. Вторичная – одноцепочечная цепь, в которой между азотистыми основаниями образуются водородные связи. Причём не все основания буду компелментарны, так что будут образовываться несвязанные участки, которые будут как бы выпирать из цепочки. Третичная – структура, в которой образуются ещё дополнительные связи между или нуклеотидными остатками, удалёнными друг от друга, либо между основаниями и остатками рибозы. Такая структура стабилизирована ионами двухвалентных металлов.

ДНК – хранение наследственной информации. РНК – мРНК – служит матрицей для синтеза белка (реализация наследственной инфы), тРНК – транспорт своей аминокислоты в рибосомам для синтеза белка. рРНК – участвуют в создании рибосом, а значит и непосредственно в трансляции. Репликация (удвоение ДНК), транскрипция – перенос генетической информации с ДНК на РНК, трансляция – синтез белка.

Биологическая роль комплементарности азотистых оснований – обеспечивает точный перенос генетической информации.

 

6. Репликация. Механизм и биологическое значение. Теломера и теломераза. Понятие о репликативной старости клетки.

Репликация – удвоение ДНК с помощью спец.фермента ДНК-полимеразы, происходит в ядре клетки в S фазу клеточного цикла, предшествует делению клетки. Происходит в несколько стадий.

ДНК- полимераза способна наращивать цепь ДНК только на 3΄– конце. Иницианцию репликации регулируют сигнальные белки – факторы роста.

Удвоение ДНК основано на том, что при расхождении нитей к каждой нити можно достроить комплементарную копию, таким образом, получая две молекулы ДНК, копирующие исходную.

Стадии репликации:

1) инициация – разрушение водородных связей и расхождение нитей (образование множества репликативных вилок)

2) элонгация – удлинение дочерних нитей, исключение праймеров

3) терминация – завершение двух дочерних цепей ДНК

ДНК-полимераза не может начать процесс синтеза сама, ей нужна «затравка», в качестве такой затравки используется фрагмент РНК. А теперь подробнее…

Инициация: 1) начинается с расплетения участка ДНК – образуется репликативная вилка ( с участием геликазы).2) у 3΄–го конца закрепляется РНК-затравка(праймер) , на другой нити закрепляются несколько праймеров.

Элонгация: 1) синтез дочерних нитей ДНК начинается с участка РНК-праймера. 2) Полимеризация мононуклеотидов, которые выстраиваются вдоль матрицы по принципу комплементарности с участием ДНК-полимераз (активируются РНК-праймеры) 3) считывание информации идет с 3-го конца к 5-му концу (строится цепь 5-3 лидирующая. 4) на другой нити – полимеризация дезоксирибонуклеотидов: строятся ферменты. Оказаки – отстающая.

Терминация: 1) Праймеры вырезаются, и происходит сшивка фрагментов ДНК-полимеразой. 2) Образуется двойная спираль, которая сформирована дочерней и материнской нитями ДНК 3) одновременно репликация идет в нескольких местах ДНК по всем направлениям – сайты репликации.

В каждой нити ДНК на 5'- конце имеются особые участки, содержащие частые повторы (ГГГТТА)- теломеры. Их роль - стоп-сигнал при повторяющейся репликации. Эти участки ДНК не копируются и не достраиваются, поэтому каждое новое деление сопровождается укорочением теломеры.

Существует критическая длина теломеры, при которой клетка утрачивает способность к репликации (делению) – репликативная старость. Репликативное старение лежит в основе старения организма. (В среднем клетка проходит 50-60 репликаций, у долгожителей больше)

В эмбриональных клетках открыт фермент – теломераза, который способен достраивать теломеры после репликации. Если вводить в клетку теломеразу, открывается возможность продление жизни клетки. Например введение стволовых клеток – обновление тканей, предупреждение старения

7. Повреждения ДНК спонтанные и индуцированные. Процессы репарации ДНК и их возможные последствия. Мутации. Роль мутаций в эволюции и возникновении наследуемых заболеваний. Понятие о генной терапии.

Спонтанные – не вызванные внешними факторами (ошибка репликации, дезаминирования нуклеотидов, депуринизации), индуцированные – вызванные внешними факторами (в основном радиация и химия)

Повреждения ДНК исправляются – репарация с участием репаративных семейств ферментов, которые вырезают поврежденные участки и образуется АП-сайт, в котором достраивается ДНК с «правильными» азотистыми основаниями и нуклеотидами. При врожденной недостаточности репаративных ферментов – МУТАЦИИ.

Репаративная система включает : 1)белки-ферменты, узнающие ошибку 2) белки-ферменты, разрезающие в этом месте цепочку. 3) ДНК-полимеразы, достраивающие цепь. 3) ДНК-лигазы, сшивающие нить, завершают репарацию.

Мутации – изменение структуры ДНК, следствием которого является изменение синтезируемых белков.

Мутации – основной поставщик материала для эволюции. (произошла мутация, в результате которой у слона хобот стал длинным, что пипец как удобно, когда ты жрёшь траву с деревьев. Вот этот слоняра с длинным хоботом стал наиболее приспособленным, выжил, дал потомство и теперь все слоны с длинными хоботами).

Мутации могут быть в соматических клетках – тогда болеет сам человек, или в половых – тогда сам организм не страдает, а вот потомство получит эту самую мутацию, что и будет называться «наследственное заболевание»

Генная терапия – лечение наследственных, многофакторных и инфекционных заболеваний путём введения в соматические клетки пациентов ген, который обеспечивает исправление генных дефектов или придаёт клеткам новые функции.

8. Регуляция клеточного цикла и репликации. Роль циклинов и белка Р53.

Клеточный цикл состоит из G1, S,G2 фазыимитоза. Одни клетки делятся постоянно, другие же не делятся в течении жизни вообще. В регуляции клеточного цикла участвуют – факторы роста, интерлейкины, гормоны.

Циклины – белки, количество которых меняется на разных фазах клеточного цикла. Они делятся на два семейства – G1 циклины и митотические циклины. Они связываются с циклинзависимыми киназами, которые фосфорилируют специфические белки, которые отвечают за транскрипцию, за её ингибирование, за синтез ферментов, обеспечивающих репликацию.

Белок Р53, увидев нарушение в генетическом коде, способен замедлять клеточный цикл клетки, чтобы исправить оплошность.

9. Апоптоз. Физиологическая роль, механизмы развития. Роль белка Р53, последствия мутаций в гене р53. Биохимические основы противоопухолевой терапии, значение лабораторного определения маркеров апоптоза.

Апоптоз - запрограммированная гибель клетки. При нормальном развитии эта программа направлена на удаление избыточно образовавшихся клеток -"безработных", а также клеток -"пенсионеров", переставших заниматься общественно полезным трудом. Другая важная функция клеточной гибели - удаление клеток -"инвалидов" и клеток- "диссидентов" с серьезными нарушениями структуры или функции генетического аппарата. В частности, заболеваний.

При апоптозе происходит гидролитический распад белков под действием протеаз, называемых каспазами и распад ДНК с помощью ДНКаз. (Эти ферменты не находятся в лизосомах, в отличии процессов, происходящих при некрозе, где работают лизосомальные ферменты.)

Белок Р53 («молекулярный полицейскиЙ») следит за генетической целостностью ДНК. При обнаружении ошибок белок Р53 принимает следущие действия: 1)активирует ферменты репаративной системы 2) разрушает циклины( отдаляя время репликации), дает время на работу ферментам репарации.3)если ошибки не устранены – активирует запуск апопптоза. А также: активирует биосинтез белков семейства Вах и Fos (активир. каспазы), угнетает биосинтез белка Всl (игибитора каспаз).

При мутации гена р53 этот белок больше не способен выполнять данную функцию, что приводит к неконтролируему делению клеток с изменённой ДНК, что приводит к развитию рака.

Противоопухолевая терапия заключается в запуске апоптоза у раковых клеток. Это достигается путём радиоактивного облучения, химического воздействия. Если терапия корректна, то активаторов апоптоза р53 и белков fas/apo1 будет много, а ингибиторов апоптоза – белка bcl-2 – мало.

10. Транскрипция. Основные элементы транскриптона. Компоненты, необходимые для транскриции. Механизм и биологическое значение транскрипции.

Транскрипция – перенос генетической информации из ДНК в РНК.

Компоненты, необходимые для транскрипции – РНК – полимеразы, ДНК, мононуклеотиды.

Транскрипция нужна, чтобы появилась мРНК, с которой потом будет идти синтез белка.

11. Генетический код. Свойства генетического кода, биологическое значение.

Вот что говорит Вика.

Генети́ческий код — свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.

Свойства ген.кода:

1. Специфичность – каждой аминокислоте соответствует триплет нуклеотидов

2. Триплетность – кодон состоит из 3-х нуклеотидов

3. Вырожденность – одной аминокислоте соответствует несколько кодонов

4. Непрерывность – между кодонами нет нуклеотидов, разделяющих их

5. Неперекрываемость - каждый нуклеотид входит в состав лишь одного кодона

6. Универсальность – у всех живых организмов одни и те же кодоны несут информацию об одних и тех же аминокислотах

7. Коллинеарность – соответствие линейной последовательности нуклеотидов в м-РНК линейной последовательности аминокислот в белке

12. Трансляция. Компоненты, необходимые для трансляции. Механизм трансляции. Роль транспортной РНК. Понятие о полисоме.

Трансляция – процесс синтеза белка на мРНК. Необходимы: рибосомы (рРНК), аминокислоты, тРНК, Аминоцил-тРНК-синтетазы, мРНК, АТФ и ГТФ как источники энергии, Белковые факторы.

тРНК имеет вторичную структуру в виде клевера : 1) акцепторный стебель 2) антикодон 3) боковые петли.

Антикодон – взаимодействует с кодонами м-РНК. Акцептор.стебель – обеспечивает специф. взаимодейтсвие с АК (каждой АК соответ. своя тРНК) Боковые петли – обеспечивают взаимодейтвие с рибосомами.

Аминоацил–тРНК (тРНК+ АК): входит в рибосому и комплементарно связывается с кодоном мРНК., зетем происходят реакции, при которых аминокислотные остатки связываются друг с другом , а тРНК – удаляется.

Полисома, или полирибосома (англ. Polysome, Polyribosome) — несколько рибосом, одновременно транслирующих одну молекулу иРНК. Поскольку длина средней молекулы мРНК значительно превышает количество нуклеотидов, занимаемых на РНК рибосомой, одну молекулу РНК, в зависимости от скорости инициации одновременно транслируют несколько рибосом.

13.Механизмы регуляции транскрипции. Примеры воздействия на процессы биосинтеза белка лекарственными препаратами.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.