Растворы играют чрезвычайно важную роль в функционировании живых систем. Растворами называют гомогенные системы переменного состава. Очень часто для качественного и количественного описания свойств растворов пользуются терминами «растворитель» и «растворенное вещество», хотя в некоторых случаях такое разделение является достаточно условным. Единственным биологическим растворителем является вода. В плазме, внутриклеточной и внеклеточной жидкостях в растворенном состоянии находятся электролиты и неэлектролиты.
Из элементарного курса химии известно, что электролитами называют вещества, расплавы и растворы которых проводят электрический ток. Неэлектролиты электрический ток не проводят.
Электролиты делятся на две большие группы: сильные и слабые.
Сильные электролиты в растворах ионизированы полностью
МА → М+ + А- ,
а слабые—частично.
МА ↔ М+ + А-
Например, азотная кислота - сильный электролит, ее молекулы в водном растворе полностью ионизированы, т.е. распадаются на ионы:
НNО3 → Н+ + NO3-
Уксусная кислота – пример слабого электролита, в ее водном растворе только небольшая часть молекул распадается на ионы:
СН3СООН ↔ Н+ + СН3СОО-
Для количественной характеристики процесса ионизации слабого электролита используют понятие степени ионизации α:
Число продиссоциировавших молекул
α = —————————————————
Общее число молекул
Степень ионизации электролита уменьшается при увеличении его концентрации. Величиной, характеризующей положение равновесия ионизации слабого электролита и не зависящей от концентрации, является константа ионизации:
с(М+)с(А-)
К = —————
с(МА)
Физико-химический смысл константа ионизации имеет только в отношении слабых электролитов. Связь между степенью ионизации и константой ионизации описывается уравнением Оствальда:
α2c
K = ———
1 - α
Для очень слабых электролитов (α <<1) величиной α в знаменателе можно пренебречь, так как 1 — α ≈ 1 и уравнение преобразуется в более простое K = α2c,
откуда
α = √ K/c
В растворах электролитов существует взаимное влияние ионов: одноименные по заряду ионы отталкиваются, а разноименные — притягиваются. В результате электростатического притяжения часть ионов оказывается в связанном состоянии. Это приводит к изменению свойств раствора, эквивалентному уменьшению концентрации кинетически самостоятельных частиц, т. е. как бы к снижению ионизации электролита (величина «степени ионизации» сильного электролита называется «кажущейся»). Взаимное влияние, мешающее ионам принимать участие в тех или иных процессах, усиливается по мере увеличения концентрации раствора.
Для количественного определения этого влияния используют величину ионной силы раствора I:
I = 0,5Σcizi2
где сi - молярная концентрация иона в растворе, моль/л;
z - заряд иона.
Ионная сила раствора является аддитивной величиной, это значит, что каждый электролит вносит свой вклад в величину I независимо от других.
Для каждого иона определенному значению ионной силы соответствует свой коэффициент активности, который показывает, какая часть ионов от их общего числа находится в активном, т. е. не связанном, состоянии.
Состав растворов электролитов часто характеризуют не аналитической концентрацией, обусловленной методикой приготовления раствора, а эффективной концентрацией, называемой активностью. Активность а связана с концентрацией соотношением:
а = fc,
где f - коэффициент активности.
Считают, что активность — безразмерная вели а dim f = dim 1/c.
При уменьшении концентрации f →1 и, следовательно, а → с. В растворах слабых электролитов значение ионной силы низкое, поэтому для них, как и для разбавленных растворов сильных электролитов, можно условно принять, что а ≈ с.
Существуют такие физико-химические свойства растворов, которые не зависят от химической природы растворенных частиц, а зависят только от их концентрации. Такие свойства называются коллигативными. Основной закон, определяющий коллигативные свойства, - закон Рауля. Он устанавливает, что давление пара растворителя р(S) над раствором нелетучего неэлектролита прямо пропорционально молярной доле растворителя х(S):
p(S) = p°x(S)
где р° — давление насыщенного пара над чистым растворителем, Па. Таким образом, давление пара растворителя над раствором нелетучего неэлектролита всегда меньше давления насыщенного пара растворителя при одной и той же температуре.
Закон Рауля строго соблюдается только для идеальных растворов. Для водных растворов всегда наблюдаются отклонения от этого закона, однако в разбавленных растворах неэлектролитов они настолько незначительны, что ими можно пренебречь. Следовательно, закон Рауля соблюдается только для разбавленных водных растворов нелетучих неэлектролитов.
Для раствора, содержащего только одно растворенное вещество X, справедливо
х(Х) + x(S) = 1.
С учетом этого равенства уравнение можно преобразовать следующим образом:
р(S) = р°[1 – x(X)], или р(S) = р°- р°х(Х)
Величина р° - p(S) называется понижением давления насыщенного пара; относительным понижением давления насыщенного пара является величина:
р° - р(S) Δр
———— = —
p° p°
Таким образом, относительное понижение давления насыщенного пара над разбавленным раствором нелетучего неэлектролита не зависит от природы растворенного вещества и равно его молярной доле в растворе:
Δp
— = x(X)
p°
Это еще одна из формулировок закона Рауля. Закон Рауля имеет ряд важных следствий.
1) Понижение температуры замерзания раствора по сравнению с температурой замерзания растворителя. Количественное соотношение для растворов, образованных любыми растворителями, устанавливается формулой:
ΔTзам = K(S) cm(X)
где cm(Х) —моляльность растворенного вещества в растворе; cm равна отношению количества растворенного вещества к массе растворителя, dim cm = M-1N; единица измерения — моль на килограмм (моль/кг); K(S) — криоскопический коэффициент растворителя, K(Н2O) = 1,86 К·кг/моль.
ΔTзам = Tзам (растворитель) – Tзам(раствор)
Анализ уравнения показывает, что
а) водные растворы с одинаковой моляльностью разных нелетучих неэлектролитов замерзают при одинаковой температуре;
б) понижение температуры замерзания растворов с одинаковой моляльностью одного и того же нелетучего неэлектролита в разных растворителях зависит только от химической природы этого растворителя.
2) Повышение температуры кипения раствора по сравнению с температурой кипения растворителя:
ΔTкип = Э(S)cm(X)
где Э(S) — эбулиоскопический коэффициент растворителя, Э(Н2O) = 0,52 К·кг/моль.
ΔTкип = Tкип(раствор) – Tкип(растворитель)
3) Осмос - направленный самопроизвольный переход молекул растворителя через мембрану, разделяющую растворы с разными значениями концентрации растворенного вещества. Мембрана должна отвечать определенным требованиям: поры ее должны пропускать молекулы растворителя, но не пропускать молекулы растворенного вещества. Такие мембраны называются полупроницаемыми. Свойствами полупроницаемых перегородок (точнее, избирательно проницаемых) обладают многие клеточные мембраны животного или растительного происхождения. Растворитель проникает через перегородку с определенным давлением, которое называют осмотическим давлением. Осмотическое давление численно равно силе, приходящейся на единицу поверхности полупроницаемой мембраны, которую нужно приложить, чтобы предотвратить проникновение молекул растворителя из раствора с меньшей концентрацией растворенного вещества в раствор с большей концентрацией.
Закон Вант-Гоффа устанавливает зависимость осмотического давления росм раствора от температуры и концентрации неэлектролита:
росм = сRТ
Изменение температуры замерзания или температуры кипения растворов электролитов, а также осмотическое давление растворов электролитов можно рассчитать по уравнениям (4.6), (4.8) и (4.10) только после введения коэффициента, учитывающего увеличение концентрации кинетически самостоятельных единиц, вызванное диссоциацией части молекул на ионы. Предложенный Вант-Гоффом эмпирический коэффициент i (изотонический коэффициент) показывает степень отклонения коллигативных свойств растворов электролитов от растворов нелетучих неэлектролитов (при условии равенства аналитических концентраций и температур). С учетом этого коэффициента уравнения (4.6), (4.8) и (4.10 приобретают следующий вид:
ΔTзам = iK(S) cm(X)
ΔTкип = iЭ(S)cm(X)
росм = iсRТ
Значение изотонического коэффициента для раствора данного электролита увеличивается по мере его разбавления, имея пределом целое число, равное числу ионов, возникающих при диссоциации структурной единицы электролита. Так, для раствора NаСl i→2; раствора СаСl2 i→3; раствора АlCl3 i→4. Из этого следует, что в растворах не все ионы принимают участие в коллигативных процессах, а только их часть, причем она будет тем меньше, чем больше концентрация раствора.
Наблюдаемое на практике значение осмотического давления при соприкосновении через мембрану двух растворов с разными значениями осмотического давления равно их разности. В этом случае раствор с большим осмотическим давлением называется гипертоническим, а с меньшим — гипотоническим. Деление растворов на гипо- и гипертонические является относительным; оно имеет смысл только при сравнении одного раствора с другим.
В растворах, в которых содержится смесь электролитов, а к таким растворам относятся все биологические жидкости, расчет числа кинетически самостоятельных частиц затруднен. В связи с этим в медицине применяются такие понятия, как осмоляльность и осмолярность.
Под осмолярностью (и осмоляльностью) понимают активную концентрацию частиц, не проникающих через идеальную полупроницаемую мембрану. Единицы измерения осмолярности совпадают с единицами измерения молярной концентрации, а осмоляльности — моляльной концентрации. Для разбавленных растворов можно принять, что численные значения осмоляльности и осмолярности совпадают. Фактически осмоляльность и осмолярность, определяемые математически как icm и iс соответственно, являются эмпирическими величинами, использование которых позволяет учесть разные по характеру отклонения от закона Рауля, возникающие в случае неидеальных растворов.
Перед решением задач рекомендуется уяснить следующие основные понятия темы:
1) активность, коэффициент активности;
2) ионная сила;
3) изотонический коэффициент;
4) осмолярность, осмоляльность;
5) осмос, осмотическое давление; гипо-, гипер- и изотонические растворы.
Обратить внимание на то, что
1) температура замерзания раствора ниже температуры замерзания растворителя:
(Тзам(раствор) = Тзам(растворитель) - ΔТзам) ;
2) температура кипения раствора выше температуры кипения растворителя:
Ткип(раствор) = Ткип(растворитель) + ΔТкип);
3) при решении задач с участием электролитов используется изотонический коэффициент;
4) в выражении для расчета осмотического давления раствора и ионной силы используют молярную концентрацию растворенного вещества, а для расчета ΔТзам и ΔТкип - моляльную концентрацию.
Учесть, что
1) криоскопический (K(S)) и эбулиоскопический (Э(S)) коэффициенты, характеризующие свойства растворителя, приведены в таблице [ ].
2) единицы измерения величины R: [Дж/(моль×К)]
3) изменение температуры по шкале Цельсия (Δt) и термодинамической шкале (ΔT) численно совпадают, т.е.