Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

вопрос 34санитарная характеристика центролизованной и децентрализованной систем водоснабжения. Гигиенические нормы



В нашей стране для централизованных источников водоснабжения действуют СанПиН 2.1.4.559-96 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества». Санитарные правила предназначены не только для воды централизованных водопроводов, а также используемой для продовольствия, продукции, хранящейся в бутылках, контейнерах и т.д. Они содержат три группы гигиенических требований: физические, химические и бактериологические. В соответствии с физическими, т.е. органолептическим,показателями вода должна быть прозрачной, бесцветной, не иметь запаха и обладать приятным вкусом. Вхимическом отношении вода должна содержать минеральные вещества и микроэлементы с учетом физиологических потребностей организма и не иметь токсичных, радиоактивных и опасных для человека веществ. Бактериологические показатели требуют безопасности воды в эпидемическом отношении.

 

Для каждого показателя. утверждены количественные нормативы. Так органолептические показатели – запах и привкус измеряются в баллах (не более 2 баллов), цветность по шкале цветности – в градусах (не более 20 о), мутность по шкале мутности - в мг/л (не более 1,5 мг/л), прозрачность - по чтению шрифта через столб исследуемой воды – в см (не менее 30 см).

 

Безопасность по химическому составу определяется по содержанию вредных веществ (всего 1200 веществ) - их содержание не должно превышать ПДК, а общая минерализация (сухой остаток) – 1000 мг/л. Косвенным показателем наличия в воде органических веществ является окисляемость воды – количество кислорода, пошедшего на окисление находящихся в воде органических веществ; чистая воды поглощает 2 - 4 мг/л кислорода (ПДК – 5 мг/л).

 

Поскольку выявление опасных бактерий в воде затруднительно и требует времени, то безопасность воды в эпидемическом отношении определяют по косвенным показателям - по микробиологическим и паразитологическим:

 

общее микробное число должно быть не более 50 в 1мл;

 

цисты лямблий в 50мл должны отсутствовать,

 

коли-титр – минимальное количество воды, в котором содержится одна кишечная палочка, –

 

. 333 мл

 

коли-индекс – количество кишечных бактерий в 1 л – не более 3-х.

 

Содержание остаточного хлора в любой точке водопроводной сети через 0,5 часа отстаивания должно сохраняться не менее 0,3-0,5 мг/л, но в периоды эпидемической опасности применяется суперхлорирование – до 1 мг/л.

 

Для децентрализованных источников водоснабжения – артскважин без разводящей сети, родников и колодцев в РФ действуют СаНПиН 2.1.4.544-96 «Требования к воде нецентрализованного водоснабжения. Санитарная охрана источников». В них органолептические показатели на один порядок ниже, чем для воды централизованного водоснабжения, а кишечных палочек допускается до 10 в 1л. Но остальные показатели должны соответствовать воде централизованного водоснабжения: показателей свежего фекального загрязнения: аммиака и нитритов (-NО2)- не более следов, хлоридов – не более 350 мг/л; показателей старого фекального загрязнения - нитратов (-NОз) – не более 45 мг/л.

35.Зоны санитарной охраны водоисточников. Методы улучшения качества питьевой воды. Санитарная охрана водоемов.

Зоны санитарной охраны (ЗСО) водоисточников

Несмотря на существующую систему водоочистки, крайне важно принять меры, исключающие значительное загрязнение водоисточников. Для этого устанавливают специальные ЗСО. Под ЗСО понимают специально выделенную вокруг источника территорию, на которой должен соблюдаться установленный режим, с целью охраны водоисточника, водопроводных сооружений и окружающей территории от загрязнения. По законодательству эта зона делится на 3 пояса:

1) пояс строгого режима;

2) пояс ограничений;

3) пояс наблюдения.

ЗСО поверхностных водоемов.

1– й пояс (пояс строгого режима) – участок, где находятся место забора воды и головные сооружения водопровода. Сюда включается акватория, примыкающая к водозабору на протяжении не менее 200 м вверх по течению и не менее 100 м ниже водозабора. Здесь выставляется военизированная охрана. Запрещаются проживание и временное пребывание посторонних лиц, а также строительство. В границы 1-го пояса небольших поверхностных источников обычно включается противоположный берег полосой 150–200 м. При ширине водоема менее 100 м в пояс входят вся акватория и противоположный берег – 50 м. При ширине более 100 м в 1-й пояс входит полоса акватории до фарватера (до 100 м). При водозаборе из озера или водохранилища в 1-й пояс входит береговая полоса не менее чем на 100 м от водозабора во всех направлениях.

2– й пояс (пояс ограничений) – территория, использование которой для промышленности, сельского хозяйства и строительства или совсем недопустимо, или разрешается на известных условиях.

3– й пояс (пояс наблюдения) – включающий все населенные пункты, имеющие связь с данным источником водоснабжения.

Методы улучшения качества питьевой воды

Основными методами улучшения качества питьевой воды являются осветление, обесцвечивание и обеззараживание. Осветление и обесцвечивание воды достигаются с помощью коагуляции, отстаивания и фильтрации. Для обеззараживания воды применяют химические (хлорирование, озонирование) и физические (кипячение, УФ - облучение) методы.

Наиболее простым, надежным и широко распространенным методом обеззараживания воды является ее хлорирование.

Для хлорирования воды применяют газообразный хлор, хлорную известь, двуокись хлора, гидрохлорид кальция, хлорамины. Для обеззараживания индивидуальных запасов воды применяются хлорсодержащие таблетки: патоцид, аквасепт и др.

Различают несколько способов хлорирования воды:

1. Хлорирование нормальными дозами (доза хлора устанавливается по величине хлорпоглощаемости и санитарной норме остаточного хлора).

2. Хлорирование с аммонизацией (в воду одновременно вводят хлор и аммиак для образования хлораминов).

3. Гиперхлорирование (доза хлора значительно превышает хлорпоглощаемость воды, под которой понимают то количество хлора, которое расходуется в процессе хлорирования 1 л воды в течение 30 мин на окисление органических веществ, легко окисляющихся неорганических веществ и соединение с протоплазмой бактериальных клеток. Для обеспечения надежности обеззараживания необходимо, чтобы после завершения процесса хлорирования в воде содержался остаточный хлор в следующих количествах:

0,3-0,5 мг/л свободного остаточного хлора (в виде хлорноватистой кислоты) при нормальном хлорировании и 0,6-1,0 мг/л связанного хлора (в виде хлораминов) при хлорировании с аммонизацией. Необходимая доза хлора при хлорировании нормальными дозами определяется в каждом случае путем проведения пробного хлорирования, с учетом хлоропоглощаемости воды.

Минимальное время контакта хлора с водой при хлорировании нормальными дозами составляет летом не менее 30 мин; зимой при низкой температуре время контакта увеличивается до 1 ч.

Санитарная охрана водоёмов

Санитарная охрана водоёмов — комплекс законодательных, организационных и санитарно-технических мероприятий, направленных на охрану открытых водоемов от загрязнения.

Наиболее значительными источниками загрязнения водоемов являются бытовые сточные воды канализованных населенных мест и сточные воды промышленных предприятий. Загрязнение воды открытых водоемов создает угрозу здоровью и оказывает неблагоприятное влияние на условия жизни населения, наносит большой ущерб рыбному хозяйству и затрудняет использование водоемов для промышленных и других народнохозяйственных целей.

Гигиенические требования к санитарной охране водоёмов направлены на создание условий, при которых спуск сточных вод не нарушал бы интересы нормального водопользования. Требования к составу и свойствам воды в пунктах питьевого и культурно-бытового водопользования приведены в «Правилах охраны поверхностных вод от загрязнения сточными водами», изданных в 1961 г. Санитарные нормативы относятся не к составу сточных вод, как прежде, а к качеству воды водоемов и содержанию в ней вредных веществ. В настоящее время разработаны и утверждены предельно допустимые концентрации для более чем 100 вредных веществ, поступающих в водоемы в составе промышленных сточных вод. Сброс в водоемы радиоактивных веществ регламентируется «Санитарными правилами работы с радиоактивными веществами и источниками ионизирующих излучений» № 333—60.

Наиболее эффективными мероприятиями по санитарной охране водоёмов являются: изменения технологических процессов, направленные на уменьшение сброса сточных вод, замена токсических продуктов безвредными или менее токсичными, извлечение и утилизация ценных веществ из сточных вод, организация оборотного водоснабжения, при котором сточные воды после соответствующей обработки вновь используются в технологическом процессе. В случае недостаточности этих мер возникает необходимость оборудования специальных сооружений для очистки и обезвреживания сточных вод (см.). Вокруг источников, используемых для централизованного водоснабжения, устанавливаются зоны санитарной охраны (см.). Решение вопросов санитарной охраны водоёмов регламентировано «Основами законодательства СССР и союзных республик о здравоохранении» (ст. 21, 25 и др.).

В предупредительном санитарном надзоре в области санитарной охраны водоёмов необходимо руководствоваться «Указаниями по проектированию наружной канализации промышленных предприятий» (СН 173 — 61) и СН и ПШГ —6 —62 («Канализация. Нормы проектирования»). При текущем санитарном надзоре (см.) контролируются эффективность очистных сооружений и правильность их эксплуатации, производится санитарно-топографическое обследование участков, на которых находятся очистные сооружения, устанавливаются пункты загрязнения, количество стоков, режим сброса, основные вещества, загрязняющие водоемы, проводится опрос жителей и отбираются пробы воды для химического, радиологического, бактериологического и биологического исследований (см.Санитарные пробы). На незагрязненных участках разовые пробы отбирают в наиболее теплый месяц года и в последний месяц зимы. Пробы воды отбирают систематически, в постоянных пунктах наблюдения: выше и ниже выпуска стоков.

36.Основные методы очистки питьевой воды (осветление и обесцвечивание, обеззараживание), их гигиеническая характеристика.

Методы очистки

Основными методами улучшения качества питьевой воды являются осветление, обесцвечивание и обеззараживание. Осветление и обесцвечивание воды достигаются с помощью коагуляции, отстаивания и фильтрации. Для обеззараживания воды применяют химические (хлорирование, озонирование) и физические (кипячение, УФ-облучение) методы.

Химические методы очистки

Наиболее простым, надежным и широко распространенным методом обеззараживания воды является ее хлорирование.

Для хлорирования воды применяют газообразный хлор, хлорную известь, двуокись хлора, гидрохлорид кальция, хлорамины. Для обеззараживания индивидуальных запасов воды применяются хлорсодержащие таблетки: патоцид, аквасепт и др.

Различают несколько способов хлорирования воды:

1. Хлорирование нормальными дозами (доза хлора устанавливается по величине хлорпоглощаемости и санитарной норме остаточного хлора).

2. Хлорирование с аммонизацией (в воду одновременно вводят хлор и аммиак для образования хлораминов).

3. Гиперхлорирование (доза хлора значительно превышает хлорпоглощаемость воды, под которой понимают то количество хлора, которое расходуется в процессе хлорирования 1 л воды в течение 30 мин на окисление органических веществ, легко окисляющихся неорганических веществ и соединение с протоплазмой бактериальных клеток. Для обеспечения надежности обеззараживания необходимо, чтобы после завершения процесса хлорирования в воде содержался остаточный хлор в следующих количествах:

0,3-0,5 мг/л свободного остаточного хлора (в виде хлорноватистой кислоты) при нормальном хлорировании и 0,6-1,0 мг/л связанного хлора (в виде хлораминов) при хлорировании с аммонизацией. Необходимая доза хлора при хлорировании нормальными дозами определяется в каждом случае путем проведения пробного хлорирования, с учетом хлоропоглощаемости воды.

Минимальное время контакта хлора с водой при хлорировании нормальными дозами составляет летом не менее 30 мин; зимой при низкой температуре время контакта увеличивается до 1 ч.

Обеззараживание воды озоном. Механизм бактерицидного действия озона заключается в инактивации бактериальных ферментов, необратимом нарушении структуры ДНК клетки атомарным кислородом, образующимся при распаде озона.

При обработке воды озоном в ней образуются продукты озонолиза органических веществ в виде альдегидов, кетонов, низкомолекулярных карбоновых кислот; среди них наиболее актуален формальдегид. Опасность продуктов озонолиза возрастает в случае комбинации в схеме обработки воды озонирования и последующего хлорирования. При этом образуются хлорированные продукты озонолиза с мутагенными и канцерогенными свойствами.

Преимущества озона перед хлором при обеззараживании воды состоят в том, что озон не образует в воде соединений, подобных хлорорганическим, улучшает органолептические свойства воды и обеспечивает бактерицидный эффект при меньшем времени контакта. Широкое внедрение озонирования в практику обработки воды сдерживается высокой энергоемкостью процесса получения озона; озонирование на порядок дороже хлорирования.

Другие бактерицидные вещества, используемые для обеззараживания воды. Практический опыт обеззараживания воды серебром накапливался человечеством на протяжении ряда веков. Работами отечественных и зарубежных ученых установлен высокий бактерицидный эффект серебра уже в концентрации 0,05 мг/л; эффективны рабочие концентрации 0,2-0,4 мг/л и выше. Антимикробное действие серебра охватывает многие виды бактерий и вирусы, но вирулицидный эффект проявляется только при высоких, выше 0,5 мг/л, концентрациях, а спороцидного действия серебро не оказывает.

Механизм бактерицидного действия серебра заключается в блокировании функциональных групп ферментных систем клетки, расположенных в цитоплазматической мембране и в периплазматическом пространстве.

Применение серебра для обеззараживания питьевой воды сдерживают его высокая стоимость, а также то обстоятельство, что его ПДК в воде, установленная по токсикологическому признаку вредности, составляет 0,05 мг/л, что на порядок ниже эффективных по бактерицидному действию концентраций. В связи с этим серебро применяется для обеззараживания и консервации небольших объемов питьевой воды в системах автономного жизнеобеспечения.

Для обеззараживания питьевой воды используют олигодинамический эффект ионов меди. Антимикробные спектры серебра и меди совпадают, но действующие концентрации меди выше, и бактерицидный эффект развивается медленнее.

Для обеззараживания индивидуальных или небольших групповых запасов питьевой воды в полевых условиях используют препараты йода, которые, в отличие от препаратов хлора, действуют быстрее и не ухудшают органолептические свойства воды. Бактерицидный эффект обеспечивается при концентрации йода 0,3-1 мг/л, вирулицид-ный - 0,5-2 мг/л при экспозиции 20-30 мин.

Физические методы

Среди безреагентных физических методов обеззараживания воды наиболее изучены ультрафиолетовые лучи. Кроме того, известен выраженный бактерицидный эффект гамма-излучения, ультразвука, импульсного электрического разряда (ИЭР).

Обеззараживание воды ультрафиолетовыми лучами основано на воздействии биологически активной ультрафиолетовой части спектра на микроорганизмы. Эта часть излучения в диапазоне длин волн от 205 до 315 нм называется бактерицидным излучением. Максимум бактерицидного действия приходится на диапазон 250-270 нм.

Применение ультрафиолетовых лучей для обеззараживания питьевой воды до недавнего времени было ограничено по причине низкой гигиенической надежности и недостаточной экономической эффективности разработанных в начале 50-х годов установок с бактерицидными лампами среднего давления.

Ультрафиолетовые лучи можно использовать для обработки воды с цветностью до 50 градусов, мутностью до 30 мг/л и содержанием железа до 5 мг/л.

Механизм бактерицидного действия ультрафиолетовых лучей заключается в необратимых повреждениях молекул ДНК и РНК микроорганизмов, находящихся в воде. Фотохимическое воздействие предполагает разрыв или изменение химических связей органической молекулы в результате поглощения энергии фотона. В основе вторичных процессов лежит образование свободных радикалов в воде, которые усиливают бактерицидный эффект ультрафиолетовых лучей.

Эффективность обеззараживающего действия ультрафиолетовых лучей зависит в первую очередь от биологических особенностей и количества микроорганизмов в обрабатываемой воде, физико-химических показателей воды, а также условий, в которых осуществляется обеззараживание.

Водные микроорганизмы имеют различную устойчивость к действию ультрафиолетовых лучей. Экспериментальные исследования показали, что для получения равного бактерицидного эффекта при обеззараживании воды, содержащей споровые микроорганизмы, бактерицидной энергии требуется в 2-3 раза больше, чем для вегетативных форм. Вегетативные формы имеют различную устойчивостью к действию ультрафиолетовых лучей. В частности, патогенные микроорганизмы - возбудители кишечных болезней (брюшного тифа, дизентерии и др.) более чувствительны к ультрафиолетовым лучам, чем бактерии группы кишечных палочек. Дозы облучения, необходимые для инактивации 99,9% микроорганизмов в лабораторных условиях, колеблются от 5,2 (шигелла Флекснера) до 11 мДж/см2 (вирус гепатита А). Различия устойчивости микроорганизмов к действию ультрафиолетовых лучей нужно учитывать при определении количества бактерицидной энергии для эффективного обеззараживания.

Консервация питьевой воды - это специфический вид обработки, позволяющий долго сохранить нормативные гигиенические показатели воды. Для консервации питьевой воды используют те же приемы и реагенты что и при обеззараживании, выбирая из них те, которые дают эффект последействия.

Также в целях обеззараживания воды можно использовать ионизирующее гамма-излучение, ультразвук, низковольтный ИЭР.

37.Характеристика специальных методов улучшения качества питьевой воды. Основные антропогенные загрязнители водоемов.

Специальные методы повышения качества питьевой воды. В отдельных случаях неблагоприятные свойства воды не удается устранить в полной мере при обычной схеме обработки. К ним относятся посторонние запахи и привкусы, растворенный сероводород и другие газы, нарушение минерального состава (высокая общая минерализация, повышенное содержание солей жесткости, железа, марганца, фтора, недостаток фтора), повышенное количество радиоактивных веществ.

Все виды кондиционирования минерального состава воды можно разделить на удаление из воды солей или газов, находящихся в ней в избыточном количестве (умягчение, обессоливание и опреснение,

обезжелезивание, дефторирование, дегазация, дезактивация и др.), и добавление минеральных веществ с целью улучшения органолептических и физиологических свойств воды (фторирование, частичная минерализация после опреснения и др.).

Для улучшения состава воды используют физические, химические, электрохимические и комбинированные методы. Так, для снижения жесткости применяют кипячение, реагентные методы, метод ионного обмена. Снижение общей минерализации подземных и морских вод достигается дистилляцией, ионной сорбцией, электролизом, вымораживанием. Удаление соединений железа и сероводорода осуществляется аэрацией с последующей сорбцией на специальном грунте. Подземные воды с избытком фтора подвергают дефторированию осаждением, ионной сорбцией, разбавлением. Дезактивация проводится как реагентными и ионообменными методами, так и разбавлением и выдержкой. В воде поверхностных водоемов, горных рек и в талых водах недостаточно содержание фтора. В такие воды вносят фтористый натрий, кремнефтористый натрий, кремнефтористую кислоту и другие фторсодержащие реагенты.

Следует подчеркнуть, что специальные методы кондиционирования воды высокотехнологичны и дороги. Такая обработка воды проводится лишь тогда, когда нет возможности использовать для водоснабжения приемлемый источник.

Искусственное (антропогенное) загрязнение водоемов является, главным образом, результатом спуска в них сточных вод от промышленных предприятий и населенных пунктов. Поступающие в водоем загрязнения в зависимости от их объема и состава могут оказывать на него различное влияние:

1) изменяются физические свойства воды (изменяется прозрачность и окраска, появляются запахи и привкусы);

2) появляются плавающие вещества на поверхности водоема и образуются отложения (осадок на дне);

3) изменяется химический состав воды (изменяется реакция, содержание органических и неорганических веществ, появляются вредные вещества и т. п.);

4) уменьшается в воде содержание растворенного кисдорода вследствие его потребления на окисление поступивших органических веществ;

5) изменяются число и виды бактерий (появляются болезнетворные), вносимых в водоем вместе со сточными водами. Загрязненные водоемы становятся непригодными для питьевого, а иногда и для технического водоснабжения; в них погибает рыба.

В первом десятилетии XXI века антропогенное загрязнение природных вод стало носить глобальный характер и существенно сократило доступные эксплуатационные ресурсы пресной воды на Земле.

Человечество потребляет на свои нужды огромное количество пресной воды. Основными ее потребителями являются промышленность и сельское хозяйство. Наиболее водоемкие отрасли промышленности — горнодобывающая, сталелитейная, химическая, нефтехимическая, целлюлозно-бумажная и пищевая. На них уходит до 70 % всей воды, затрачиваемой в промышленности.

Одним из основных загрязнителей воды является нефть и нефтепродукты. Нефть может попадать в воду в результате естественных ее выходов в районах залегания. Но основные источники загрязнения связаны с человеческой деятельностью: нефтедобычей, транспортировкой, переработкой и использованием нефти в качестве топлива и промышленного сырья.

Среди продуктов промышленного производства особое место по своему отрицательному воздействию на водную среду и живые организмы занимают токсичные синтетические вещества. Они находят все более широкое применение в промышленности, на транспорте, в коммунально-бытовом хозяйстве. Концентрация этих соединений в сточных водах, как правило, составляет 5-15мг/л при ПДК — 0,1 мг/л. Эти вещества могут образовывать в водоёмах слой пены, особенно хорошо заметный на порогах, перекатах, шлюзах. Способность к пенообразованию у этих веществ появляется уже при концентрации 1-2 мг/л.

Из других загрязнителей необходимо назвать металлы (например, ртуть, свинец, цинк, медь, хром, олово, марганец), радиоактивные элементы, ядохимикаты, поступающие с сельскохозяйственных полей, и стоки животноводческих ферм. Небольшую опасность для водной среды из металлов представляют ртуть, свинец и их соединения.

Основные загрязнители водных экосистем в различных отраслях промышленности

Отрасль промышленности Основные виды загрязняющих веществ

Нефтегазодобыча, нефтепереработка Нефтепродукты, синтетические поверхностно-активные вещества, фенолы, аммонийные соли, сульфиды

Лесная промышленность, целлюлозно-бумажная промышленность Сульфаты, органические вещества, лигнины, смолистые и жирные вещества

Машиностроение, металлообработка, металлургия Тяжелые металлы, фториды, цианиды, аммонийные соединения, нефтепродукты, фенолы, смолы

Химическая промышленность Фенолы, нефтепродукты, синтетические поверхностно-активные вещества, ароматические углеводороды, неорганика

Горнодобывающая и угольная промышленность Флотореагенты, неорганика, фенолы

Легкая, текстильная и пищевая промышленность Синтетические поверхностно-активные вещества, нефтепродукты, органические красители, другие органические вещества

Значительное количество таких опасных загрязняющих веществ, как пестициды, аммонийный и нитратный азот, фосфор, калий и др., смывается с сельскохозяйственных территорий. В основном они попадают в водоемы и водостоки без какой-либо очистки, а поэтому содержат высокую концентрацию органических веществ, биогенных элементов и других загрязнителей.

Главный же потребитель пресной воды — сельское хозяйство: на его нужды уходит 60-80 % всей пресной воды. Причём велик ее безвозвратный расход (особенно на орошение).

Расширенное производство (без очистных сооружений) и применение ядохимикатов на полях приводят к сильному загрязнению водоемов вредными соединениями. Загрязнение водной среды происходит в результате прямого внесения ядохимикатов при обработке водоемов для борьбы с вредителями, поступления в водоемы воды, стекающей с поверхности обработанных сельскохозяйственных угодий, при сбросе в водоемы отходов предприятий — производителей, а также в результате потерь при транспортировке, хранении и частично с атмосферными осадками.

Наряду с ядохимикатами сельскохозяйственные стоки содержат значительное количество остатков удобрений (азота, фосфора, калия), вносимых на поля. Кроме того, большие количества органических соединений азота и фосфора попадают со стоками от животноводческих ферм, а также с канализационными стоками. Повышение концентрации питательных веществ в почве приводит к нарушению биологического равновесия в водоеме.

Вначале в таком водоеме резко увеличивается количество микроскопических водорослей. С увеличением кормовой базы возрастает количество ракообразных, рыб и других водных организмов. Затем происходит отмирание огромного количества организмов. Оно приводит к расходованию всех запасов кислорода, содержащегося в воде, и накоплению сероводорода. Обстановка в водоеме меняется настолько, что он становится непригодным для существования любых форм организмов. Водоем постепенно «умирает».

Загрязняющие вещества могут проникать и в подземные воды: при просачивании промышленных и сельскохозяйственных стоков из хранилищ, прудов-накопителей, отстойников и др. Загрязнения подземных вод не ограничиваются территориями промышленных предприятий, хранилищ отходов и пр., а распространяются вниз по течению потока на расстояния до 20 - 30 км и более от источника загрязнения. Всё это создает реальную угрозу для питьевого водоснабжения в этих районах.

Более того, загрязнение подземных вод негативно сказывается и на экологическом состоянии поверхностных вод, почв и других компонентов природной среды. В частности, загрязняющие вещества, содержащиеся в подземных водах, могут выноситься потоком в поверхностные водоемы и загрязнять их.

38.Гигиеническое значение почвы, состав и свойства почвы. Загрязнение и самоочищение почвы. Характеристика и источники антропогенного загрязнения почвы. Система очистки населенных мест.

Гигиеническое значение состава и свойств почвы

С гигиенической точки зрения важно знать основные свойства почвы, чтобы уметь заключить, здоровой или нездоровой будет та или иная почва. К ним относятся пористость, воздухо- и водопроницаемость, влагоемкостъ, капиллярность, температура, почвенные организмы.

Пористость - суммарный объем пор в единице объема почвы, выраженный в процентах. От этого свойства зависит ее фильтрационная способность: чем выше пори-стость почвы, тем эта способность ниже. При пористости 60-65% создаются наилучшие условия для процессов самоочищения.

Воздухопроницаемость — способность почвы пропускать воздух. Она зависит от величины пор почвы, увеличивается при повышении атмосферного давления и уменьшается с увеличением толщины слоя почвы и ее влажности.

Высокая воздухопроницаемость — благоприятное гигиеническое свойство, так как она способствует аэрированию почвы, т.е. насыщению кислородом, необходимым для окисления органических веществ.

Водопроницаемость (фильтрационная способность) - способность почвы впитывать и пропускать воду, поступающую в основном с атмосферными осадками. Это свойство важно для образования почвенной воды и запасов ее в подземных слоях.

Влагоемкостъ - количество влаги, которое почва способна удерживать с помощью сорбционных и капиллярных сил. Она тем больше, чем меньше поры и чем больше их суммарный объем. Гигиеническое значение этого свойства заключается в том, что высокая влагоемкость способствует сырости почвы, снижению воздухе- и водопроницаемости, ухудшает процессы самоочищения. Почвы с таким свойством считаются сырыми, холодными и, значит, нездоровыми.

Капиллярность - способность почвы поднимать воду по капиллярам из глубоких слоев в верхние. Чем больше в почве мелких пор, тем она более капиллярна и тем выше по ней поднимается вода.

Температура почвы влияет на температуру приземного слоя атмосферы, тепловой режим помещений 1-го этажа и подвальных помещений, а также жизнедеятельность почвенных микроорганизмов и процессы самоочищения.

Степень нагревания почвы солнцем зависит от географического положения местности, ее рельефа, времени года, суток и характера почвы. Сильнее и быстрее нагреваются склоны, обращенные к южным направлениям, темный цвет почвы способствует поглощению тепла, а светлый — его отражению, сухие почвы прогреваются быстрее, чем сырые. Суточные колебания температуры воздуха отражаются до глубины не более 1 м. Однако в сильные морозы почва может промерзать на глубину 1-2 м, что необходимо учитывать в строительной практике при прокладке водопроводных и канализационных труб, заложении фундаментов зданий.

В холодном климате северных районов почва на определенной глубине никогда не оттаивает, образуя слой вечной мерзлоты.

Почвенные организмы. Естественными обитателями почвы являются разнообразные представители почвенной флоры и фауны, число которых непостоянно и зависит от состава почвы, ее температурного режима, инсоляции, механической обработки и других моментов. К почвенной флоре относятся грибы, водоросли, бактерии и вирусы. Фауна представлена одноклеточными организмами, простейшими, нематодами, клещами, личинками и куколками мух, дождевыми червями, млекопитающими (кроты, мыши, крысы и др.).

Почвенные организмы оказывают на состояние почвы прямое и косвенное влияние, способствуя процессам самоочищения и повышению плодородия.

Почва оказывает огромное влияние на свойства и состав подземных вод и воды открытых водоемов. Она всегда содержит то или иное количество влаги, поступившей с атмосферными осадками или поднявшейся по капиллярам из нижележащих слоев земли, а также образовавшейся в результате поглощения паров воды из атмосферного воздуха. Вода необходима для существования живых организмов и роста растений. Гигиеническое значение почвенной воды велико и разнообразно. Она служит универсальным растворителем органических и минеральных соединений, транспортом для доставки химических веществ растениям. Почвенная влага существенно влияет на тепловые свойства почвы, увеличивая ее теплоемкость и теплопроводность. Из почвенных вод образуются грунтовые воды. Химический и бактериальный состав питьевой воды во многом определяется составом и свойствами почвы.

Количество почвенного воздуха определяется свойствами и характером почв. Почвенный воздух постоянно обменивается с атмосферным. В почвах всегда содержится повышенное по сравнению с атмосферным воздухом количество углекислого газа (до 8%), содержание кислорода в почве снижается до 14%. При ограниченном доступе воздуха в толще отбросов развиваются гнилостные процессы с выделением зловонных газов и паров (сероводорода, аммиака, фтороводорода и другие), способных в соответствующих концентрациях токсически воздействовать на организм человека.

Самоочищение и загрязнение почвы

Почвенный покров принадлежит к саморегулирующейся биологической системе, являющейся важнейшей частью биосферы в целом. Почва, особенно ее верхние слои, постоянно загрязняется всевозможными опасными для здоровья людей отходами, и если бы она не обладала способностью обезвреживать их, жизнь на Земле стала бы невозможной.

Естественный процесс освобождения почвы от органических соединений и патогенных микроорганизмов, содержащихся в попавших в почву нечистотах, называется самоочищением.

Самоочищение почвы начинается с частичной задержки бактерий, вирусов и яиц гельминтов в ее толще и постепенно приводит к уменьшению их количества при прохождении через слои почвы. Одновременно под влиянием сложных процессов с использованием механической, физико-химической, биологической и биохимической поглотительной способности почвы нечистоты постепенно обесцвечиваются, теряют дурной запах.

Почва превращает органические вещества, опасные в эпидемиологическом отношении, в неорганические минеральные вещества, гумус, газы и воду путем, процессов минерализации, нитрификации и гумификации.

Разложение и минерализация органических веществ в почве происходят в аэробных и анаэробных условиях.

Аэробные процессы протекают при обилии кислорода в присутствии аэробных микроорганизмов, в этом случае органические вещества распадаются и окисляются без образования дурнопахнущих газов.

Анаэробные процессы протекают в бескислородной среде с участием анаэробных гнилостных бактерий, сопровождаясь выделением аммиака и сероводорода.

С гигиенической точки зрения, предпочтительнее аэробный процесс разложения органических веществ.

Самоочищающая способность почвы не безгранична и следует нагружать ее отходами только до тех пределов, которые не препятствуют достаточному доступу кислорода.

В результате хозяйственной деятельности человека в почву непосредственно или опосредованно попадает огромное количество химических веществ, которые существенно меняют ее химический состав. Степень загрязнения почв наиболее интенсивна в районе предприятий цветной металлургии (в 450 раз выше фоновой), приборостроения (в 300 раз) и черной металлургии (в 250 раз) и менее интенсивна вблизи машиностроительных и химических предприятий. Особую экологическую опасность представляют автотрассы. В США исследование полосы шириной 50 м по обочинам шоссе показало, что за счет заражения почвы земляные черви резко обогащены свинцом, цинком, никелем и кадмием. Птицы, поедающие этих червей, погибают от отравления тяжелыми металлами.

Все химические вещества, попадающие в почву, можно разделить на 2 группы:

а) химические вещества, вносимые в почву планомерно, целесообразно, организованно: минеральные удобрения, пестициды, структурообразователи почвы,

стимуляторы роста;

б) химические вещества, попадающие в почву случайно с техногенными жидкими, твердыми и газообразными отходами.

Территориально это связано с конкретными видами промышленности. Такие территории страдают избытком определенных химических веществ, которые включаются в биологический цикл человека.

Основным критерием оценки загрязнения почв химическими веществами является предельно допустимая концентрация (ПДК) или ориентировочно допустимая концен-трация (ОДК) химических веществ в почве. Оценка степени опасности загрязнения почвы химическими веществами проводится по каждому веществу.

Химические вещества экзогенного происхождения при их накоплении в почве почти полностью подавляют весь биоценоз почвы, извращают процессы самоочищения.

Компенсаторные силы почвы достаточны лишь при очень небольшом в количественном отношении загрязнении почвы. Резкое увеличение нагрузки на почвенные процессы приводит к угнетению самоочищения и резкому изменению биоценоза почвы.

Санитарное состояние почвы оценивают по ряду показателей, одним из которых является санитарное число, или число Хлебникова, представляющее отношение азота гумуса почвы к общему органическому азоту почвы. В чистой почве оно составляет 0,98-1,0, а в сильно загрязненной — 0,7 и меньше.

Для оценки загрязненности почвы микроорганизмами используют специальные бактериологические показатели (коли-титр, титр анаэробов и др.).

Антропогенное загрязнение почвы

Загрязнения почвы трудно классифицируются, в разных источниках их

деление даётся по-разному. Если обобщить и выделить главное, то наблюдается

следующая картина по загрязнению почвы:

1) Мусором, выбросами, отвалами, отстойными породами. В эту группу

входят различные по характеру загрязнения смешанного характера,

включающие как твёрдые, так и жидкие вещества, не слишком

вредные для организма человека, но засоряющие поверхность почвы,

затрудняющие рост растений на этой площади.

2) Тяжёлыми металлами. Данный вид загрязнений уже представляет

значительную опасность для человека и других живых организмов,

так как тяжёлые металлы нередко обладают высокой токсичностью и

способностью к кумуляции в организме. Наиболее распространённое

автомобильное топливо - бензин - содержит очень ядовитое

соединение - тетраэтилсвинец, содержащее тяжёлый металл свинец,

который попадает в почву. Из других тяжёлых металлов, соединения

которых загрязняют почву, можно назвать Cd (кадмий), Cu (медь),

Cr (хром), Ni (никель), Co (кобальт), Hg (ртуть), As (мышьяк),

Mn (марганец).

3) Пестицидами. Эти химические вещества в настоящее время широко

используются в качестве средств борьбы с вредителями культурных

растений и поэтому могут находиться в почве в значительных

количествах. По своей опасности для животных и человека они

приближаются к предыдущей группе. Именно по этой причине был

запрещён для использования препарат ДДТ (дихлор-дифенил-

трихлорметилметан), который является не только высокотоксичным

соединением, но, также, он обладает значительной химической

стойкостью, не разлагаясь в течение десятков (!) лет. Следы ДДТ

были обнаружены исследователями даже в Антарктиде! Пестициды

губительно действуют на почвенную микрофлору: бактерии,

актиномицеты, грибы, водоросли.

4) Микотоксинами. Данные загрязнения не являются антропогенными,

потому что они выделяются некоторыми грибами, однако, по своей

вредности для организма они стоят в одном ряду с перечисленными

загрязнениями почвы.

5) Радиоактивными веществами. Радиоактивные соединения стоят

несколько обособленно по своей опасности, прежде всего потому,

что по своим химическим свойствам они практически не отличаются

от аналогичных не радиоактивных элементов и легко проникают во

все живые организмы, встраиваясь в пищевые цепочки. Из

радиоактивных изотопов можно отметить в качестве примера один

наиболее опасный - 90Sr (стронций-90). Данный радиоактивный

изотоп имеет высокий выход при ядерном делении (2 - 8%), большой

период полураспада (28,4 года), химическое сродство с кальцием,

а, значит, способность откладываться в костных тканях животных и

человека, относительно высокую подвижность в почве. Совокупность

вышеназванных качеств делают его весьма опасным радионуклидом.

137Cs (цезий-137), 144Ce (церий-144) и 36Cl (хлор-36) также

являются опасными радиоактивными изотопами. Хотя существуют

природные источники загрязнений радиоактивными соединениями, но

основная масса наиболее активных изотопов с небольшим периодом

полураспада попадает в окружающую среду антропогенным путём: в

процессе производства и испытаний ядерного оружия, из атомных

электростанций, особенно в виде отходов и при авариях, при

производстве и использовании приборов, содержащих радиоактивные

изотопы и. т. д.

ОЧИСТКА НАСЕЛЁННЫХ МЕСТ - система мероприятий по сбору, удалению, утилизации и обезвреживанию отходов (отбросов). По источникам образования отходы подразделяют на бытовые и промышленные. Их количество и виды в населенном пункте зависят от числа проживающих на его территории, наличия канализации, вида и масштабов промышленного и сельскохозяйственного производства, а также от климатических условий, системы отопления, вида топлива и др. При нарушении сан. режима бытовые и промышленные отходы могут загрязнять атмосферный воздух и воздушную среду в жилых и общественных зданиях, источники питьевого и хозяйственного водоснабжения, почву и с. -х. продукцию. При неправильном хранении отбросов они могут служить пищей для грызунов - переносчиков возбудителей нек-рых инф. болезней.

Очистка населенных мест обеспечивается силами самого населения (сбор, удаление отходов из жилья), органов коммунального хозяйства Советов народных депутатов, колхозов, совхозов, промышленных предприятий, обеспечивающих сбор и вывоз отходов к местам утилизации, захоронения и обезвреживания. Она находится под постоянным контролем СЭС. Основной объем работ по очистке населенных мест от бытовых отходов осуществляется специальными автохозяйствами. Существует три вида планово-регулярной очистки от бытовых отходов: 1) подворная контейнерная система вывоза отходов со сменой контейнеров; 2) подворная баковая система вывоза отходов с использованием несменяемых сборников - контейнеров (контейнеры подкатывают к специализированной автомашине и механически или вручную, при отсутствии механизации, опрокидывают в ее кузов); 3) поквартирная система очистки, предполагающая вынос отходов из каждой квартиры жителями и высыпание их в кузов автомашины. Время прихода специализированной автомашины устанавливается специальным графиком. Поквартирная система очистки применяется в небольших городах и поселках. Из многоэтажных жилых домов отходы удаляются по мусоропроводам в контейнеры, размещенные внизу. По мере заполнения контейнеры выносят на специальную бетонированную дворовую площадку, расположенную на расстоянии не ближе 20 м от детских площадок, мест отдыха населения, но не далее 100 м от жилых помещений. Твердые бытовые отходы должны вывозиться в холодное время года не реже 1 раза в 3 дня, а в теплое время - ежедневно. Расчет транспорта производится с учетом количества населения и нормы накопления отходов на одного человека в год.

Обезвреживание и частичная утилизация бытовых отходов производятся на специально отведенных полигонах методом компостирования, на мусоросортировочных и мусороперерабатывающих заводах. Применяют биотермические методы обезвреживания отходов, к-рые обеспечивают полный распад органических веществ с образованием гумуса (удобрение для почвы), гибель патогенных микроорганизмов и яиц гельминтов, а также сжигание мусора с утилизацией тепла. Последний метод менее экономичен, но эпидемиологически надежен, т. е. дает полную гарантию обезвреживания, в т. ч. инф. материала больниц, поликлиник, ветеринарных лечебниц и др.

На мусоросортировочных заводах из отходов извлекается вторичное сырье, в процессе переработки отходов получают комбикорма, гранулированные удобрения, нефтеподобные масла, используемые в качестве сырья для хим. промышленности или топлива.

В частично канализованных населенных пунктах полужидкие нечистоты из выгребов общественных уборных вывозят специальным транспортом на сливные станции, представляющие собой сооружения для спуска нечистот в канализацию с разбавлением их водой.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.