Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Тема 21. Закономерности наследования и изменчивости признаков



I. История генетики

Генетика — наука, изучающая закономерности и материальные основы наследственности и изменчивости организмов, а также механизмы эволюции живого.

 

В своем развитии генетика прошла ряд этапов:


Начало

 

Томас Эндрю Найт (1785–1838 г.г.) - английский селекционер, скрещивая различные растения, он обратил внимание на то, что каж­дый сорт отличается определенным набором признаков. В гибридах эти особенности не теряются, а наследуются в различных комбинациях.

Так, в начале XIX века Т. Найт пришел к концепции об элементарных наследственных признаках, которые через сто лет получили название генов.

 

Огюстен Сажре(1763-1851 г.г.)- французский исследователь, установил явление доминантности. В своих опытах он обратил внимание на то, что при скрещи­вании различных сортов растений в гибридах часто проявляются отличительные черты только одного из родителей.

 

Шарль Ноден (1815-1899 г.г.)- французский исследователь, предпринял количественные исследования распределения наследственных признаков при скрещивании.

Но он, как и Сажре, экспериментировал с растениями, мало подходящими для такого рода анализа. Работа этих и других исследователей подготовила почву для выяснения законов генетики. Однако, чтобы получить ясные результаты, требовалось правильно сформулировать вопрос и точно поставить эксперимент.

Первый этап - характеризуется открытием дискретности наследственной информации

1865 г.чешский монах натуралист Грегор Иоганн Мендель (1822-1884 г.г.) открыл дискретность (делимость) наследственных факторов и разработал гибридологический метод, изучения наследственности, т. е. правила скрещивания организмов и учета признаков у их потомства.

1900 г. – были переоткрыты законы Менделя тремя биологами (независимо друг от друга): голландским ботаником и генетиком Хуго де Фризом (1848–1935 г.г.), немецким ботаником и генетиком Карлом Корренсом (1864-1933 г.г.) и австрийским ботаником Эрихом Чермаком. (1871-1962 г.г.) .

Результаты гибридизации, полученные в первое десятилетие XX в. на различных растениях и животных, полностью подтвердили менделевские законы наследования признаков и показали их универсальный характер по отношению ко всем организмам, размножающимся половым путем. Закономерности наследования признаков в этот период изучались на уровне целостного организма (горох, кукуруза, мак, фасоль, кролик, мышь и др.).

!!! Т.о. Менделевские законы наследственности заложили основу теории гена — величайшего открытия естествознания XX в., а генетика превратилась в быстро развивающуюся отрасль биологии.

1901 —1903 гг.голландский ботаник и генетик Хугоде Фриз (1848—1935 г.г.) выдвинул мутационную теорию изменчивости, которая сыграла большую роль в дальнейшем развитии генетики.

 

Второй этап - характеризуется переходом к изучению явлений наследственности на клеточном уровне.

 

1902 г.американец Уолтер Сэттон (1877-1916 г.г.) и немецкий цитолог и эмбриолог Теодор Бовери (1862-1915) независимо друг от друга предположили, что гены (единицы наследственной информации) расположены в хромосомах, и что каждая яйцеклетка или сперматозоид содержат только по одной хромосоме каждого типа. Эта идея положила начало хромосомной теории наследственности.

1904 г. английский биолог Уильям Бейтсон (1861-1926 г.г.) продемонстрировал, что хромосомы наследуются как единое целое.

 

1906 г. английский генетик Реджинальд Паннетт (1875-1967 г.г.) ввел термин «генетика» (наука о законах и механизмах наследственности и изменчивости).


1909 г. датский биолог Вильгельм Иоганнсен (1857-1927 г.г.) вводит термин «гены» и формулирует различия между понятиями генотип (совокупность всех генов организма) и фенотип (совокупность всех признаков организма).

 

1910—1911 г.г. американский биолог Томас Морган(1866 – 1945 г.г.)совместно со своими ученикамиустановил, что гены расположены в хромосомах в линейном порядке, образуя группы сцепления. Также он сформулировал основные положения хромосомной теории наследственности (за что в 1933 г. получил Нобелевскую премию).

Третий этап - связан с использованием методов и принципов точных наук (физики, химии, математики, биофизики и др.) в изучении явлений жизни на уровне молекул. Объектами генетических исследований стали грибы, бактерии, вирусы.

1944 г. американский микробиолог, генетик Освальд Теодор Эвери (1877-1955 г.г.) доказал, что носителем генетической информации является ДНК.

 

1950 г американский биохимик Эрвин Чаргафф (1905 - 2002 г.г.) установил, что в ДНК общее количество аденина равно общему количеству тимина (А=Т), а количество гуанина – количеству цитозина (Г=Ц).

1953 г. британский молекулярный биолог Френсис Крик (1916(19160608) - 2004 г.г.) и американский психолог Джон Уотсон (1878 —1958 г.г.) создали структурную модель ДНК в форме двойной спирали (за что в 1962 г. получили Нобелевскую премию).

1959 г. французские микробиологи Франсис Жакоб и Жаквис Моно (1910-1976) установили факт существования механизма регуляции генов.

1961 г. –был расшифрован генетический коди механизм его действия в процессе синтеза белка в клетке

1963 г американский биохимик Маршал Ниренберг расшифровал генетический код, который оказался универсальным как для бактерий, так и для высших организмов вплоть до человека (за что получил Нобелевскую Премию в 1968 г.).

1966 г. М.Ниренберг и Генрих Маттэй продемонстрировали, что каждую из 20 аминокислот кодируют три смежных нуклеотида (кодон).

1970-е г.г. - были найдены методы искусственного получения мутаций и с их помощью созданы ценные сорта растений и штаммы микроорганизмов — продуцентов антибиотиков, аминокислот.

1972 г. – формируется генная инженерия — система приемов, позволяющих биологу конструировать искусственные генетические системы.

!!!Таким образом, третий, современный этап развития генетики открыл огромные перспективы направленного вмешательства в явления наследственности и селекции растительных и животных организмов, выявил важную роль генетики в медицине, в частности, в изучении закономерностей наследственных болезней и физических аномалий человека.

II. Законы Менделя

В 1856–66 годах чешским монахом натуралистом Грегором Иоганном Менделем (1822-1884) были поставлены знаменитые опыты, результатом которых стало появление новой науки – генетики.

Мендель установил закономерности наследования признаков. В 1865 г. он опубликовал книгу "Опыты над растительными гибридами".

Объектом для экспериментов был выбран огородный горох, так как существует множество его сортов, чётко различающихся по ряду признаков; растения легко выращивать и скрещивать.

Скрещивание двух орга­низмов называется гибридизацией, потомство от скре­щивания двух особей с разной наследственностью назы­вают гибридным, а отдельную особь гибридом.

Скрещивание двух организмов, отличающихся друг от друга по одной паре альтерна­тивных (взаимоисключающих) признаков называется моно­гибридным скрещиванием, по двум парам признаков – дигибридным скрещивание, а по множеству пар признаков - полигибридным скрещиванием.

Явление преобладания у гибрида при­знака одного из родителей назваемся домини­рованием. Признак, проявляющийся у гибрида первого поколения и подавляющий развитие другого признака, был назван доминантным, а противоположный, т, е. по­давляемый, признак — рецессивным.

Если в генотипе организма (зиготы) два одинаковых аллельных гена — оба доминантные или оба рецессивные (АА или аа), та­кой организм называется гомозиготным. Если же из пары аллельных генов один доминантный, а другой рецессивный (Аа), то такой организм носит название гетерозиготного.

Первый закон, или закон единообразия гибридов первого поколения, утверждает, что при скрещивании организмов, различающихся аллельными признаками, в первом поколении гибридов проявляется лишь один из них – доминантный, а альтернативный ему, рецессивный, остаётся скрытым

 

Второй закон, или закон расщепления, гласит, что при скрещивании между собой двух гибридов первого поколения (или при их самоопылении) во втором поколении проявляются в определённом соотношении оба признака исходных родительских форм. Расщепление по генотипу 1:2:1 , по фенотипу 3:1.

Третий закон, или закон независимого комбинирования, утверждает, что при скрещивании гомозиготных особей, отличающихся по двум и более парам альтернативных признаков, каждая из таких пар (и пар аллельных генов) ведёт себя независимо от других пар, т. е. и гены, и соответствующие им признаки наследуются в потомстве независимо и свободно комбинируются во всех возможных сочетаниях.

 

Схема, иллюстрирующая единообразие гибридов первого поколения F1 (первый закон Менделя) и расщепление признаков у потомства второго поколения F2 с преобладанием доминантного фенотипа над рецессивным в отношении 3 : 1 (второй закон Менделя); A — доминантный ген, а — рецессивный ген. Заштрихованный круг — доминантный фенотип, а светлый — рецессивный. Схема, иллюстрирующая независимое комбинирование признаков (третий закон Менделя). \Наследование жёлтой (В) и зелёной (b) окраски семян, а также круглой (А) и морщинистой (а) их формы. А и В доминируют над аллелями а и b. Генотипы родителей и потомков обозначены комбинацией указанных букв, а четыре разных фенотипа — при помощи различной штриховки.

В современной интерпретации основные положения теории наследственности Менделя следующие:

  • За наследственные признаки отвечают дискретные (отдельные, не смешивающиеся) наследственные факторы — гены (термин «ген» предложен в 1909 г. В.Иоганнсеном)

Дискретность наследственности состоит в том, что отдельные свойства и признаки организма развиваются под контролем наследственных факторов (генов), которые при слиянии гамет и образовании зиготы не смешиваются, не растворяются, а при формировании новых гамет наследуются независимо друг от друга.

  • Каждый диплоидный организм содержит пару аллелей данного гена, отвечающих за данный признак; один из них получен от отца, другой — от матери.
  • Наследственные факторы передаются потомкам через половые клетки. При формировании гамет в каждую из них попадает только по одному аллелю из каждой пары (гаметы «чисты» в том смысле, что не содержат второго аллеля).

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.